首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
If alien civilizations do, or did, exist, their technology will impact their environment. Some consideration has been given to the detection of large-scale astro-engineering, such as Dyson spheres. However, a very advanced technology might leave more subtle footprints requiring sophisticated scientific methods to uncover. We must not overlook the possibility that alien technology has impacted our immediate astronomical environment, even Earth itself, but probably a very long time ago. This raises the question of what traces, if anything, might remain today. I shall consider the possibilities of biological, geological and physical traces, and suggest ways that we might search for them.  相似文献   

2.
With their similar size, chemical composition, and distance from the Sun, Venus and Earth may have shared a similar early history. Though surface conditions on Venus are now too extreme for life as we know it, it likely had abundant water and favorable conditions for life when the Sun was fainter early in the Solar System. Given the persistence of life under stabilizing selection in static environments, it is possible that life could exist in restricted environmental niches, where it may have retreated after conditions on the surface became untenable. High-pressure subsurface habitats with water in the supercritical liquid state could be a potential refugium, as could be the zone of dense cloud cover where thermoacidophilic life might have retreated. Technology based on the Stardust Mission to collect comet particles could readily be adapted for a pass through the appropriate cloud layer for sample collection and return to Earth.  相似文献   

3.
As the field of astrobiology matures and search strategies for life on other worlds are developed, the need to analyze in a systematic way the plausibility for life on other planetary systems becomes increasingly apparent. We propose the adoption of a simple plausibility of life (POL) rating system based on specific criteria. Category I applies to any body shown to have conditions essentially equivalent to those on Earth. Category II applies to bodies for which there is evidence of liquid water and sources of energy and where organic compounds have been detected or can reasonably be inferred (Mars, Europa). Category III applies to worlds where conditions are physically extreme but possibly capable of supporting exotic forms of life unknown on Earth (Titan, Triton). Category IV applies to bodies that could have seen the origin of life prior to the development of conditions so harsh as to make its perseverance at present unlikely but conceivable in isolated habitats (Venus, Io). Category V would be reserved for sites where conditions are so unfavorable for life by any reasonable definition that its origin or persistence there cannot be rated a realistic probability (the Sun, gas giant planets). The proposed system is intended to be generic. It assumes that life is based on polymeric chemistry occurring in a liquid medium with uptake and degradation of energy from the environment. Without any additional specific assumptions about the nature of life, the POL system is universally applicable.  相似文献   

4.
Ten thousand years ago, no-one on Earth was living a “civilized” life. What has happened since is remarkable and impossible to fully comprehend; yet, everyone has ideas about civilization, and how the world came to be as it is. Such understandings of civilizations on Earth inevitably influence speculation about extraterrestrial civilizations, in two ways. First, sometimes a specific Earth civilization or historical experience is explicitly used as a basis for inferences about extraterrestrial civilizations. Second, more general assumptions about the development and functioning of Earth's societies shape conjectures about alien societies. This paper focuses on the latter, general assumptions, with the aim of considering how we can use multidisciplinary approaches, and our knowledge of Earth's civilizations, to our best advantage in SETI.  相似文献   

5.
Life and living systems need several important factors to establish themselves and to have a continued tradition. In this article the nature of the borderline situation for microbial life under heavy salt stress is analyzed and discussed using the example of biofilms and microbial mats of sabkha systems of the Red Sea. Important factors ruling such environments are described, and include the following: (1) Microbial life is better suited for survival in extremely changing and only sporadically water-supplied environments than are larger organisms (including humans). (2) Microbial life shows extremely poikilophilic adaptation patterns to conditions that deviate significantly from conditions normal for life processes on Earth today. (3) Microbial life adapts itself to such extremely changing and only ephemerally supportive conditions by the capacity of extreme changes (a) in morphology (pleomorphy), (b) in metabolic patterns (poikilotrophy), (c) in survival strategies (poikilophily), and (d) by trapping and enclosing all necessary sources of energy matter in an inwardly oriented diffusive cycle. All this is achieved without any serious attempt at escaping from the extreme and extremely changing conditions. Furthermore, these salt swamp systems are geophysiological generators of energy and material reservoirs recycled over a geological time scale. Neither energy nor material is wasted for propagation by spore formation. This capacity is summarized as poikilophilic and poikilotroph behavior of biofilm or microbial mat communities in salt and irradiationstressed environmental conditions of the sabkha or salt desert type. We use mainly cyanobacteria as an example, although other bacteria and even eukaryotic fungi may exhibit the same potential of living and surviving under conditions usually not suitable for life on Earth. It may, however, be postulated that such poikilophilic organisms are the true candidates for life support and survival under conditions never recorded on Planet Earth. Mars and some planets of other suns may be good candidates to search for life under conditions normally not thought to be favorable for the maintenance of life.  相似文献   

6.
The possibility of life on Mars is explored through the recently found meteorite ALH84001. Thought to have left Mars 16 million years ago, the meteorite was found on an Antarctic ice shelf in 1984. Carbonate globules were found containing microfossils and unusual mineral compounds. NASA researchers believe they have found single-celled fossils resembling nanobacteria fossils found on Earth, but caution that much more research is required.  相似文献   

7.
Ragnar E Lofstedt   《Space Policy》2003,19(4):1096-292
In 2014 NASA may bring back a sample of Mars rocks, soil and atmosphere to Earth. The most likely location for returning this sample will be somewhere in the central USA. The purpose of the project is to understand the history of Mars; the samples may also reveal evidence of previous or existing life on Mars. Confirmation of this possibility would rank as one of the most profound discoveries in human history, yet to date it is unclear how the public in the USA actually views the mission. This study addresses this issue by examining the views of 70 residents of Cincinnati, OH. These perceptions are examined in light of the conceptual ideas and theories presented in the risk perception and communication literatures. While respondents were generally favourable towards a Mars sample return mission, and largely unworried by possible risks, they did have concerns about the use of plutonium for electrical propulsion and were somewhat ill-informed about the issues.  相似文献   

8.
An organic haze layer in the upper atmosphere of Titan plays a crucial role in the atmospheric composition and climate of that moon. Such a haze layer may also have existed on the early Earth, providing an ultraviolet shield for greenhouse gases needed to warm the planet enough for life to arise and evolve. Despite the implications of such a haze layer, little is known about the organic material produced under early Earth conditions when both CO(2) and CH(4) may have been abundant in the atmosphere. For the first time, we experimentally demonstrate that organic haze can be generated in different CH(4)/CO(2) ratios. Here, we show that haze aerosols are able to form at CH(4) mixing ratios of 1,000 ppmv, a level likely to be present on early Earth. In addition, we find that organic hazes will form at C/O ratios as low as 0.6, which is lower than the predicted value of unity. We also show that as the C/O ratio decreases, the organic particles produced are more oxidized and contain biologically labile compounds. After life arose, the haze may thus have provided food for biota.  相似文献   

9.
We present the results of an experimental study of aqueous corrosion of Fe-phosphide under conditions relevant to the early Earth. The results strongly suggest that iron meteorites were an important source of reactive phosphorus (P), a requirement for the formation of P-based life. We further demonstrate that iron meteorites were an abundant source of phosphide minerals early in Earth history. Phosphide corrosion was studied in five different solutions: deionized water, deionized water buffered with sodium bicarbonate, deionized water with dissolved magnesium and calcium chlorides, deionized water containing ethanol and acetic acid, and deionized water containing the chlorides, ethanol, and acetic acid. Experiments were performed in the presence of both air and pure Ar gas to evaluate the effect of atmospheric chemistry. Phosphide corrosion in deionized water results in a metastable mixture of mixed-valence, P-bearing ions including pyrophosphate and triphosphate, key components for metabolism in modern life. In a pH-buffered solution of NaHCO(3), the condensed and reduced species diphosphonate is an abundant corrosion product. Corrosion in ethanol- and acetic acid-containing solutions yields additional P-bearing organic molecules, including acetyl phosphonate and a cyclic triphosphorus molecule. Phosphonate is a major corrosion product of all experiments and is the only P-bearing molecule that persists in solutions with high concentrations of magnesium and calcium chlorides, which suggests that phosphonate may have been a primitive oceanic source of P. The stability and reactivity of phosphonate and hypophosphite in solution were investigated to elucidate reaction mechanisms and the role of mineral catalysts on P-solution chemistry. Phosphonate oxidation is rapid in the presence of Fe metal but negligible in the presence of magnetite and in the control sample. The rate of hypophosphite oxidation is independent of reaction substrate.  相似文献   

10.
Abstract We examined a low-energy mechanism for the transfer of meteoroids between two planetary systems embedded in a star cluster using quasi-parabolic orbits of minimal energy. Using Monte Carlo simulations, we found that the exchange of meteoroids could have been significantly more efficient than previously estimated. Our study is relevant to astrobiology, as it addresses whether life on Earth could have been transferred to other planetary systems in the Solar System's birth cluster and whether life on Earth could have been transferred from beyond the Solar System. In the Solar System, the timescale over which solid material was delivered to the region from where it could be transferred via this mechanism likely extended to several hundred million years (as indicated by the 3.8-4.0?Ga epoch of the Late Heavy Bombardment). This timescale could have overlapped with the lifetime of the Solar birth cluster (~100-500?Myr). Therefore, we conclude that lithopanspermia is an open possibility if life had an early start. Adopting parameters from the minimum mass solar nebula, considering a range of planetesimal size distributions derived from observations of asteroids and Kuiper Belt objects and theoretical coagulation models, and taking into account Oort Cloud formation models, we discerned that the expected number of bodies with mass>10?kg that could have been transferred between the Sun and its nearest cluster neighbor could be of the order of 10(14) to 3·10(16), with transfer timescales of tens of millions of years. We estimate that of the order of 3·10(8)·l (km) could potentially be life-bearing, where l is the depth of Earth's crust in kilometers that was ejected as the result of the early bombardment. Key Words: Extrasolar planets-Interplanetary dust-Interstellar meteorites-Lithopanspermia. Astrobiology 12, 754-774.  相似文献   

11.
A central question in astrobiology is whether life exists elsewhere in the universe. If so, is it related to Earth life? Technologies exist that enable identification of DNA- or RNA-based microbial life directly from environmental samples here on Earth. Such technologies could, in principle, be applied to the search for life elsewhere; indeed, efforts are underway to initiate such a search. However, surveying for nucleic acid-based life on other planets, if attempted, must be carried out with caution, owing to the risk of contamination by Earth-based life. Here we argue that the null hypothesis must be that any DNA discovered and sequenced from samples taken elsewhere in the universe are Earth-based contaminants. Experience from studies of low-biomass ancient DNA demonstrates that some results, by their very nature, will not enable complete rejection of the null hypothesis. In terms of eliminating contamination as an explanation of the data, there may be value in identification of sequences that lie outside the known diversity of the three domains of life. We therefore have examined whether a fourth domain could be readily identified from environmental DNA sequence data alone. We concluded that, even on Earth, this would be far from trivial, and we illustrate this point by way of examples drawn from the literature. Overall, our conclusions do not bode well for planned PCR-based surveys for life on Mars, and we argue that other independent biosignatures will be essential in corroborating any claims for the presence of life based on nucleic acid sequences.  相似文献   

12.
With the Cassini-Huygens Mission in orbit around Saturn, the large moon Titan, with its reducing atmosphere, rich organic chemistry, and heterogeneous surface, moves into the astrobiological spotlight. Environmental conditions on Titan and Earth were similar in many respects 4 billion years ago, the approximate time when life originated on Earth. Life may have originated on Titan during its warmer early history and then developed adaptation strategies to cope with the increasingly cold conditions. If organisms originated and persisted, metabolic strategies could exist that would provide sufficient energy for life to persist, even today. Metabolic reactions might include the catalytic hydrogenation of photochemically produced acetylene, or involve the recombination of radicals created in the atmosphere by ultraviolet radiation. Metabolic activity may even contribute to the apparent youth, smoothness, and high activity of Titan's surface via biothermal energy.  相似文献   

13.
It is sometimes assumed that the rapidity of biogenesis on Earth suggests that life is common in the Universe. Here we critically examine the assumptions inherent in this if-life-evolved-rapidly-life-must-be-common argument. We use the observational constraints on the rapidity of biogenesis on Earth to infer the probability of biogenesis on terrestrial planets with the same unknown probability of biogenesis as the Earth. We find that on such planets, older than approximately 1 Gyr, the probability of biogenesis is > 13% at the 95% confidence level. This quantifies an important term in the Drake Equation but does not necessarily mean that life is common in the Universe.  相似文献   

14.
The NASA High Resolution Microwave Survey consists of two complementary elements: a Sky Survey of the entire sky to a moderate level of sensitivity; and a Targeted Search of nearby stars, one at a time, to a much deeper level of sensitivity. In this paper we propose strategies for target selection. We have two goals: to improve the chances of successful detection of signals from technical civilizations that inhabit planets around solar-type stars, and to minimize the chances of missing signals from unexpected sites. For the main Targeted Search survey of approximately 1000 nearby solar-type stars, we argue that the selection criteria should be heavily biased by what we know about the origin and evolution of life here on Earth. We propose that observations of stars with stellar companions orbiting near the habitable zone should be de-emphasized, because such companions would prevent the formation of habitable planets. We also propose that observations of stars younger than about three billion years should be de-emphasized in favor of older stars, because our own technical civilization took longer than three billion years to evolve here on Earth. To provide the information needed for the preparation of specific target lists, we have undertaken an inventory of a large sample of solar-type stars out to a distance of 60 pc, with the goal of characterizing the relevant astrophysical properties of these stars, especially their ages and companionship. To complement the main survey, we propose that a modest sample of the nearest stars should be observed without any selection biases whatsoever. Finally, we argue that efforts to identify stars with planetary systems should be expanded. If found, such systems should receive intensive scrutiny.  相似文献   

15.
Continued interest in the possibility of evidence for life in the ALH84001 Martian meteorite has focused on the magnetite crystals. This review is structured around three related questions: is the magnetite in ALH84001 of biological or non-biological origin, or a mixture of both? does magnetite on Earth provide insight to the plausibility of biogenic magnetite on Mars? could magnetotaxis have developed on Mars? There are credible arguments for both the biological and non-biological origin of the magnetite in ALH84001, and we suggest that more studies of ALH84001, extensive laboratory simulations of non-biological magnetite formation, as well as further studies of magnetotactic bacteria on Earth will be required to further address this question. Magnetite grains produced by bacteria could provide one of the few inorganic traces of past bacterial life on Mars that could be recovered from surface soils and sediments. If there was biogenic magnetite on Mars in sufficient abundance to leave fossil remains in the volcanic rocks of ALH84001, then it is likely that better-preserved magnetite will be found in sedimentary deposits on Mars. Deposits in ancient lakebeds could contain well-preserved chains of magnetite clearly indicating a biogenic origin.  相似文献   

16.
The polymerization of amino acids leading to the formation of peptides and proteins is a significant problem for the origin of life. This problem stems from the instability of amino acids and the difficulty of their oligomerization in aqueous environments, such as seafloor hydrothermal systems. We investigated the stability of amino acids and their oligomerization reactions under high-temperature (180-400°C) and high-pressure (1.0-5.5?GPa) conditions, based on the hypothesis that the polymerization of amino acids occurred in marine sediments during diagenesis and metamorphism, at convergent margins on early Earth. Our results show that the amino acids glycine and alanine are stabilized by high pressure. Oligomers up to pentamers were formed, which has never been reported for alanine in the absence of a catalyst. The yields of peptides at a given temperature and reaction time were higher under higher-pressure conditions. Elemental, infrared, and isotopic analyses of the reaction products indicated that deamination is a key degradation process for amino acids and peptides under high-pressure conditions. A possible NH(3)-rich environment in marine sediments on early Earth may have further stabilized amino acids and peptides by inhibiting their deamination.  相似文献   

17.
Jones EG  Lineweaver CH  Clarke JD 《Astrobiology》2011,11(10):1017-1033
We present a comprehensive model of martian pressure-temperature (P-T) phase space and compare it with that of Earth. Martian P-T conditions compatible with liquid water extend to a depth of ~310?km. We use our phase space model of Mars and of terrestrial life to estimate the depths and extent of the water on Mars that is habitable for terrestrial life. We find an extensive overlap between inhabited terrestrial phase space and martian phase space. The lower martian surface temperatures and shallower martian geotherm suggest that, if there is a hot deep biosphere on Mars, it could extend 7 times deeper than the ~5?km depth of the hot deep terrestrial biosphere in the crust inhabited by hyperthermophilic chemolithotrophs. This corresponds to ~3.2% of the volume of present-day Mars being potentially habitable for terrestrial-like life.  相似文献   

18.
We have explored the direct and indirect radiative effects on climate of organic particles likely to have been present on early Earth by measuring their hygroscopicity and cloud nucleating ability. The early Earth analog aerosol particles were generated via ultraviolet photolysis of an early Earth analog gas mixture, which was designed to mimic possible atmospheric conditions before the rise of oxygen. An analog aerosol for the present-day atmosphere of Saturn's moon Titan was tested for comparison. We exposed the early Earth aerosol to a range of relative humidities (RHs). Water uptake onto the aerosol was observed to occur over the entire RH range tested (RH=80-87%). To translate our measurements of hygroscopicity over a specific range of RHs into their water uptake ability at any RH < 100% and into their ability to act as cloud condensation nuclei (CCN) at RH > 100%, we relied on the hygroscopicity parameter κ, developed by Petters and Kreidenweis. We retrieved κ=0.22?±0.12 for the early Earth aerosol, which indicates that the humidified aerosol (RH < 100 %) could have contributed to a larger antigreenhouse effect on the early Earth atmosphere than previously modeled with dry aerosol. Such effects would have been of significance in regions where the humidity was larger than 50%, because such high humidities are needed for significant amounts of water to be on the aerosol. Additionally, Earth organic aerosol particles could have activated into CCN at reasonable-and even low-water-vapor supersaturations (RH > 100%). In regions where the haze was dominant, it is expected that low particle concentrations, once activated into cloud droplets, would have created short-lived, optically thin clouds. Such clouds, if predominant on early Earth, would have had a lower albedo than clouds today, thereby warming the planet relative to current-day clouds.  相似文献   

19.
Life is generally believed to emerge on Earth, to be at least functionally similar to life as we know it today, and to be much simpler than modern life. Although minimal life is notoriously difficult to define, a molecular system can be considered alive if it turns resources into building blocks, replicates, and evolves. Primitive life may have consisted of a compartmentalized genetic system coupled with an energy-harvesting mechanism. How prebiotic building blocks self-assemble and transform themselves into a minimal living system can be broken into two questions: (1) How can prebiotic building blocks form containers, metabolic networks, and informational polymers? (2) How can these three components cooperatively organize to form a protocell that satisfies the minimal requirements for a living system? The functional integration of these components is a difficult puzzle that requires cooperation among all the aspects of protocell assembly: starting material, reaction mechanisms, thermodynamics, and the integration of the inheritance, metabolism, and container functionalities. Protocells may have been self-assembled from components different from those used in modern biochemistry. We propose that assemblies based on aromatic hydrocarbons may have been the most abundant flexible and stable organic materials on the primitive Earth and discuss their possible integration into a minimal life form. In this paper we attempt to combine current knowledge of the composition of prebiotic organic material of extraterrestrial and terrestrial origin, and put these in the context of possible prebiotic scenarios. We also describe laboratory experiments that might help clarify the transition from nonliving to living matter using aromatic material. This paper presents an interdisciplinary approach to interface state of the art knowledge in astrochemistry, prebiotic chemistry, and artificial life research.  相似文献   

20.
Ophiolites, sections of ocean crust tectonically displaced onto land, offer significant potential to support chemolithoautotrophic life through the provision of energy and reducing power during aqueous alteration of their highly reduced mineralogies. There is substantial chemical disequilibrium between the primary olivine and pyroxene mineralogy of these ophiolites and the fluids circulating through them. This disequilibrium represents a potential source of chemical energy that could sustain life. Moreover, E (h)-pH conditions resulting from rock- water interactions in ultrabasic rocks are conducive to important abiotic processes antecedent to the origin of life. Serpentinization--the reaction of olivine- and pyroxene-rich rocks with water--produces magnetite, hydroxide, and serpentine minerals, and liberates molecular hydrogen, a source of energy and electrons that can be readily utilized by a broad array of chemosynthetic organisms. These systems are viewed as important analogs for potential early ecosystems on both Earth and Mars, where highly reducing mineralogy was likely widespread in an undifferentiated crust. Secondary phases precipitated during serpentinization have the capability to preserve organic or mineral biosignatures. We describe the petrology and mineral chemistry of an ophiolite-hosted cold spring in northern California and propose criteria to aid in the identification of serpentinizing terranes on Mars that have the potential to harbor chemosynthetic life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号