首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
随着智能控制技术的不断成熟,无人机给军事领域带来快速发展的同时也带来了威胁.因此针对空中飞行的无人机进行实时检测的任务需求,设计了一种基于Gabor深度学习的无人机目标检测算法.首先,搭建基于Gabor滤波器的深度神经网络,输入的图片经过该网络进行网格化划分,用以特征提取;然后,针对每个格子的特征利用回归算法计算其中物体的位置信息,并利用分类算法计算物体的类别信息,对以上得到的回归和分类结果进行筛选、融合得到最终的检测结果;最后,采集空中飞行的无人机真实数据构建数据集,在此基础上进行网络模型训练和算法验证.  相似文献   

2.
基于Elman网络的共轴式直升机动力学系统辨识   总被引:2,自引:0,他引:2  
根据共轴式直升机动力学与运动学基本方程的结构形式建立了一种基于改进的Elman神经网络的辨识模型,同时推导了该网络的训练算法,给出了训练步骤.随后,利用外场试飞中几个典型飞行状态的遥测数据对网络进行训练,计算权值矩阵,获得该共轴式直升机用来进行动力学系统分析的神经网络模型.以匀速前飞状态为例进行了纵向操纵响应仿真,比较仿真结果和实际遥测数据可知,该网络模型基本反映了样例机的动态特性.   相似文献   

3.
无人机数据链通信受到各种自然与人为的干扰,信噪比(SNR)是信道状态和通信质量的有效评估指标。为解决传统估计算法信噪比估计精度不足的问题,提出了一种卷积神经网络(CNN)与长短时记忆(LSTM)网络结合的估计模型。利用仿真与实测相结合的方式,构建了一个包含不同信噪比、调制方式、衰落信道等信息的无人机通信信号数据集;在网络训练阶段,将样本序列进行分割,对分割后的每一部分序列使用CNN-LSTM网络提取深度特征,多次训练并保存模型参数;在测试阶段,利用构建好的测试集完成对算法的验证与测试,得到信噪比估计值。实验表明,相比于传统信噪比估计算法与单一网络结构的深度学习算法,所提算法的均方误差最低,实现了对信噪比的高精度估计。   相似文献   

4.
针对复杂环境下空地数据链正交频分复用(OFDM)系统信道估计精度不足的问题,提出了一种基于调制卷积神经网络(MCNN)和双向长短时记忆网络(BiLSTM)结合的信道估计算法。利用最小二乘算法(LS)提取初始信道状态信息(CSI);利用MCNN网络提取初始CSI的深度特征,并对网络模型进行压缩;利用BiLSTM网络对最终CSI进行预测,实现信道估计。利用构建的空地信道模型生成信道系数数据集,实现神经网络模型的训练与测试。仿真结果表明:与传统算法和现有深度学习方法相比,所提出的信道估计算法具有更小的估计误差,高信噪比条件下的系统误码率(BER)性能提升接近一个数量级;由于引入了调制滤波器技术,随着神经网络层数增加,网络模型参数量大幅减少。   相似文献   

5.
飞机飞行控制系统机电作动器(EMA)的渐变性故障很难准确预判,若不能及早发现而任其发展就会影响到飞机的飞行安全性。针对EMA的渐变性故障,提出一种基于动态小波神经网络(DWNN)的故障诊断方法。首先,利用EMA在电机电枢绕组匝间短路、传动装置丝杆和滚珠磨损等多种渐变性故障状态下的运行数据来训练DWNN故障诊断模型;然后,利用训练好的DWNN模型对EMA渐变性故障进行诊断。创新之处在于DWNN模型利用小波分解算法去除了传感器测量信号中高频分量的影响,利用反馈神经网络的记忆能力融合了过去输入的信息和过去预测的信息,提高了对EMA渐变性故障诊断的准确性。通过对某型EMA进行故障诊断实验,仿真结果表明所提出的DWNN方法可以实现对EMA部件渐变性故障的准确诊断。   相似文献   

6.
一种前馈神经网络的变误差主动式学习算法   总被引:1,自引:0,他引:1  
研究误差反向传播多层前馈神经网络的主动式学习方法.文章分析了目前用于训练前馈神经网络改进BP算法的特点和存在的不足,在此基础上提出逐次主动调整网络学习误差的网络训练思想,根据网络输出误差趋势,主动变化输出层的调整误差δpl,使W\+k\-\{ji}和θ\+k\-j在调整过程中受到每次学习效果信息的控制,从而得到一种主动式变误差的学习算法.实验表明,在训练多层前馈神经网络时,变误差主动式算法的学习效率比改进BP算法的学习效率有明显提高.  相似文献   

7.
眼动交互是头戴式虚拟现实(VR)/增强现实(AR)设备的关键操控方式, 如何进行高精度、高鲁棒性的非标定视线估计是当前VR/AR眼动交互的核心问题之一, 高效、鲁棒的非标定视线估计需要大量的眼图训练数据和高效的算法结构做支撑。在现有基于深度学习的近眼视线估计方法的基础上, 通过添加多任务辅助推理模块, 增加网络结构的多阶段输出, 进行多任务联合训练, 在不增加视线估计测试耗时的前提下, 有效提升视线估计精度。在模型训练时, 从视线估计网络结构的多个中间阶段引出多个眼部特征的辅助推理并行网络头, 包括眼动图像的语义分割、虹膜边界框及眼部轮廓信息, 为原始视线估计网络提供多阶段中继监控, 在不增加训练数据的基础上, 有效提升视线估计网络的测试精度。在国际公开数据集Acomo-14与OpenEDS2020上的验证实验表明, 与无辅助推理的网络相比, 所提方法精度分别得到了21.74%与18.91%的效果提升, 平均角度误差分别减少到1.38°与2.01°。   相似文献   

8.
粒子群优化在直升机旋翼动平衡调整中的应用   总被引:2,自引:0,他引:2  
传统的直升机旋翼调整方法没有考虑调整参数与振动信号之间的非线性关系,针对这一缺点,提出将广义回归神经网络(GRNN,General Regression Neural Network)和粒子群算法相结合的旋翼调整方法,采用GRNN网络建立旋翼动平衡调整模型,以桨叶的调整参数作为神经网络的输入,以旋翼转轴和机身的三向的加速度测量值作为网络输出,建立调整参数与直升机振动信号间的模型.以直升机振动作为目标函数,采用粒子群优化算法对桨叶的调整参数进行寻优,获得当直升机振动最小时的桨叶的调整量. 飞行实验结果表明,此方法可通过飞行测试获得的新数据对神经网络进行更新,使系统在使用过程中不断完善,并可在较少的飞行调整下完成旋翼的动平衡调整.   相似文献   

9.
研究了压电致动器的几种主要非线性特征的联合建模方案,其中包括迟滞、蠕变和温度漂移.提出了一个利用NARM AX模型的级联单隐层前馈神经网络以消除迟滞的影响,利用信息标准和误差缩减比算法确定对模型误差影响最大的几项回归因子作为网络的输入节点.实验表明,利用多网络泛化和正则化策略,网络在测试数据上的绝对误差可以下降到不高于±0.1 μm;通过将运行时间、温度传感器测量值和激励电压频率三项数据加入输入节点,可补偿蠕变和温度漂移导致的非线性因素,将最终在测试集上的绝对误差限制在±0.01 μm之内,且对于不同的激励电压频率具有良好的泛化能力.本文的研究成果对于多非线性耦合的压电执行器建模有一定的借鉴意义.  相似文献   

10.
研究了压电致动器的几种主要非线性特征的联合建模方案,其中包括迟滞、蠕变和温度漂移.提出了一个利用NARM AX模型的级联单隐层前馈神经网络以消除迟滞的影响,利用信息标准和误差缩减比算法确定对模型误差影响最大的几项回归因子作为网络的输入节点.实验表明,利用多网络泛化和正则化策略,网络在测试数据上的绝对误差可以下降到不高于±0.1 μm;通过将运行时间、温度传感器测量值和激励电压频率三项数据加入输入节点,可补偿蠕变和温度漂移导致的非线性因素,将最终在测试集上的绝对误差限制在±0.01 μm之内,且对于不同的激励电压频率具有良好的泛化能力.本文的研究成果对于多非线性耦合的压电执行器建模有一定的借鉴意义.  相似文献   

11.
在对带有不同肋间距和肋高的直肋变截面U型通道的换热性能进行了实验研究的基础上,分单元处理了数据,并采用经过LM(Levenberg-Marquardt)算法和贝叶斯正则化方法改进的基于BP(Back-Propagation)算法的前馈神经网络对数据结果进行了建模,实现了对带直肋的变截面U型通道换热性能的预测,实践证明,人工神经网络ANN(Artificial Neural Network)方法可以用于航空发动机涡轮叶片内通道换热性能的预测,并且其预测精度明显高于非线性拟合.  相似文献   

12.
在飞机设计中,应用驾驶员数学模型预测飞机飞行品质是避免人机系统出现不良耦合的重要途径之一.驾驶员神经网络模型是利用飞行模拟实验数据建立的驾驶员模型.基于该模型,针对纵向单通道俯仰跟踪任务,详细讨论了具有不同增益、不同短周期振荡频率飞机构型的驾驶员操纵行为变化规律.研究结果表明:对于特性相似的飞机构型,其驾驶员操纵特性也相似.因此,提出了一种利用相似构型的驾驶员操纵行为特性建立驾驶员预测模型的方法.通过对预测模型进行精度评价,可以证明采用本方法能够获得比较满意的驾驶员操纵行为特性预测结果.  相似文献   

13.
利用BP神经网络技术分别对2008年后磁平静期印度扇区、秘鲁扇区以及CHAMP卫星的赤道电集流(EEJ)变化进行预测,其中神经网络训练数据为对应的2000—2007年磁平静期EEJ观测数据,输入参量为天数、地方时、太阳天顶角、太阳活动指数(F10.7)、太阴时以及卫星地理经度,输出参量为EEJ.对EEJ预测结果进行了统计学分析,并且与实际观测结果进行对比.结果表明:BP神经网络对事件中EEJ的变化具有很好的预测能力,预测结果能够反映EEJ的重要分布特征;EEJ预测值与观测值之间具有很好的相关性,其中地磁台站观测值与预测值相关性系数可达85%以上.此外,将BP神经网络模型的预测结果与Yamazaki提出的经验模型结果进行对比,结果显示BP神经网络与其经验模型性能相当.研究结果表明,BP神经网络技术在平静期EEJ变化预测方面性能优异,具有良好的应用前景.   相似文献   

14.
用Fluent软件,VOF(Volume of Fluid)模型,对基准罐体在不同充液比下受到横向加速度时的受力进行数值模拟;以充液比、前两时刻基准罐体受力、加速度及将要经历的加速度作为输入,以下一时刻受力作为目标输出,选用合理的计算结果作为训练样本,建立基于BP神经网络液体横向晃动时基准罐体受力的预测模型,用158个样本对完成训练的网络进行可靠性验证,横向力、垂向力和侧倾力矩最大预测误差分别为8.88%,0.36%,1.38%,符合精度要求.基准罐体的时间步长和受力进行修正后,与一般圆柱及椭圆形罐体受力的大小和规律基本一致;对于作横向运动的柱形罐体,受力大小与罐体长度成正比.通过修正基准罐体的时间步长和受力,对一般圆柱及椭圆形罐体的受力也可实现BP神经网络的预测,为罐车动力学分析快速有效地提供所需数据.   相似文献   

15.
针对传统神经网络用于图像压缩时存在的训练时间长、泛化能力弱等问题,提出一种基于联想记忆型神经网络的图像压缩新方法.利用牛顿前向插值多项式构建联想记忆系统,对图像数据进行建模.首先将图像数据分为多个数据块,然后利用数据块对联想记忆系统进行训练,训练结束后得到该数据块的特征数据,特征数据的数量小于原始数据块,且数值大多在零附近.最后对所有数据块的特征数据重新排序,进行熵编码,从而实现图像数据的压缩.实验结果表明该方法是可行的和有效的,相比传统神经网络,联想记忆系统无需预先训练,不依赖训练集数据和初始值,可以实时编码.   相似文献   

16.
复合材料热压罐成型过程中的固化度差值是复合材料固化度均匀性的主要表征参数之一。基于3层BP神经网络,以复合材料双平台固化工艺曲线的加热速率、保温时间和保温温度为输入参数,建立了成型过程任一时刻最大固化度差值的快速估算模型。仿真复合材料热压罐成型过程,得到最大固化度差值作为试验样本数据,对BP神经网络进行训练,训练结束后对该模型的准确性进行验证。结果表明:该BP神经网络估算模型准确性和效率较高,为复合材料热压罐成型最大固化度差值的估算提供了一种快速有效的新方法。   相似文献   

17.
针对目前基于深度神经网络的柱塞泵故障诊断方法在小样本条件下精度低、模型欠拟合问题,提出一种小样本条件下基于孪生神经网络的柱塞泵故障诊断方法。搭建了柱塞泵故障实验台,采集柱塞泵在不同健康状态下的壳体振动信号;使用由卷积层和池化层组成孪生子网络自适应地从原始振动信号中提取低维特征,使用欧式距离判定输入样本对的特征相似度;通过相似度对比的方法扩大训练样本数量并训练孪生神经网络模型;最后,对测试样本进行健康状态识别。实验结果表明:与传统深度神经相比,所提方法在小样本情况下具有更高的准确率。同时,多通道数据融合实验表明:所提方法能够从不同通道的信号中学习到有关故障信息,多通道数据融合可以进一步提高诊断准确率。  相似文献   

18.
利用行星际监测数据进行地磁暴预报   总被引:2,自引:0,他引:2  
利用全连接神经网络方法应用于地磁Dst指数的预报中.对ACE卫星探测的太阳风和行星际磁场及其变化对未来几小时的Dst指数的影响进行了统计分析,发现在这些行星际实测参数中,对Dst指数作用较为明显的是太阳风速度、太阳风质子密度和行星际磁场南向分量,同时,当前Dst指数实测值对今后几小时的Dst指数已有很强的制约作用.在统计分析的基础上,建立了全连接神经网络预报模型.由于采用了全连接神经网络结构,模式能够反映出太阳风、行星际磁场等参数与地磁Dst指数参数的复杂联系,可以自动建立输入参量的最佳组合方式,提高了预报精度.通过利用大量实测数据对神经网络模式进行训练,最终建立了利用优选的ACE卫星行星际监测数据提前2 h对Dst指数进行预报.通过检测,预报的误差为14.3%.   相似文献   

19.
卫星上测温资源有限,只有部分设备有测温点,难以准确获得其他无测温点设备的温度。基于反向传播(BP)神经网络对复杂非线性系统优秀的拟合能力,建立了估测卫星上无测温点设备温度的神经网络,以在轨有测温点设备温度为输入层,以在轨无测温点设备为输出层,并使用卫星热试验获得的星上温度遥测数据和在轨无测温点设备的热电偶温度数据进行训练和测试。测试结果表明,所建立的神经网络估测精度在1℃以内,可以用来精确估测卫星无测温点设备的温度。针对学习样本对估测误差之间关系进行了研究,计算表明,学习样本的多样性和大数据量能够显著减小估测误差。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号