首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To close mass exchange loops in bioregenerative life support systems more efficiently, researchers of the Institute of Biophysics SB RAS (Krasnoyarsk, Russia) have developed a procedure of wet combustion of human wastes and inedible parts of plants using H2O2 in alternating electromagnetic field. Human wastes pretreated in this way can be used as nutrient solutions to grow plants in the phototrophic unit of the LSS. The purpose of this study was to explore the possibilities of using human wastes oxidized to different degrees to grow plants cultivated on the soil-like substrate (SLS). The treated human wastes were analyzed to test their sterility. Then we investigated the effects produced by human wastes oxidized to different degrees on growth and development of wheat plants and on the composition of microflora in the SLS. The irrigation solution contained water, substances extracted from the substrate, and certain amounts of the mineralized human wastes. The experiments showed that the human wastes oxidized using reduced amounts of 30% H2O2: 1 ml/g of feces and 0.25 ml/ml of urine were still sterile. The experiments with wheat plants grown on the SLS and irrigated by the solution containing treated human wastes in the amount simulating 1/6 of the daily diet of a human showed that the degree of oxidation of human wastes did not significantly affect plant productivity. On the other hand, the composition of the microbiota of irrigation solutions was affected by the oxidation level of the added metabolites. In the solutions supplemented with partially oxidized metabolites yeast-like microscopic fungi were 20 times more abundant than in the solutions containing fully oxidized metabolites. Moreover, in the solutions containing incompletely oxidized human wastes the amounts of phytopathogenic bacteria and denitrifying microorganisms were larger. Thus, insufficiently oxidized sterile human wastes added to the irrigation solutions significantly affect the composition of the microbiological component of these solutions, which can ultimately unbalance the system as a whole.  相似文献   

2.
The study addresses the possibility of long-duration operation of a higher plant conveyor, using a soil-like substrate (SLS) as the root zone. Chufa (Cyperus esculentus L.), radish (Raphanus sativus L.), and lettuce (Lactuca sativa L.) were used as study material. A chufa community consisting of 4 age groups and radish and lettuce communities consisting of 2 age groups were irrigated with a nutrient solution, which contained mineral elements extracted from the SLS. After each harvest, inedible biomass of the harvested plants and inedible biomasses of wheat and saltwort were added to the SLS. The amounts of the inedible biomasses of wheat and saltwort to be added to the SLS were determined based on the nitrogen content of the edible mass of harvested plants. CO2 concentration in the growth chamber was maintained within the range of 1100–1700 ppm. The results of the study show that higher plants can be grown quite successfully using the proposed process of plant waste utilization in the SLS. The addition of chufa inedible biomass to the SLS resulted in species-specific inhibition of growth of both cultivated crops and microorganisms in the “higher plants – SLS” system. There were certain differences between the amounts of some mineral elements removed from the SLS with the harvested edible biomass and those added to it with the inedible biomasses of wheat and saltwort.  相似文献   

3.
The main obstacle to using mineralized human solid and liquid wastes as a source of mineral elements for plants cultivated in bio-technical life support systems (BLSS) is that they contain NaCl. The purpose of this study is to determine whether mineralized human wastes can be used to prepare the nutrient solution for long-duration conveyor cultivation of uneven-aged wheat and Salicornia europaea L. plant community. Human solid and liquid wastes were mineralized by the method of “wet incineration” developed by Yu. Kudenko. They served as a basis for preparing the solutions that were used for conveyor-type cultivation of wheat community represented by 5 age groups, planted with a time interval of 14 days. Wheat was cultivated hydroponically on expanded clay particles. To reduce salt content of the nutrient solution, every two weeks, after wheat was harvested, 12 L of solution was removed from the wheat irrigation tank and used for Salicornia europaea cultivation in water culture in a conveyor mode. The Salicornia community was represented by 2 age groups, planted with a time interval of 14 days. As some portion of the nutrient solution used for wheat cultivation was regularly removed, sodium concentration in the wheat irrigation solution did not exceed 400 mg/L, and mineral elements contained in the removed portion were used for Salicornia cultivation. The experiment lasted 4 months. The total wheat biomass productivity averaged 30.1 g · m−2 · day−1, and the harvest index amounted to 36.8%. The average productivity of Salicornia edible biomass on a dry weight basis was 39.3 g · m−2 · day−1, and its aboveground mass contained at least 20% of NaCl. Thus, the proposed technology of cultivation of wheat and halophyte plant community enables using mineralized human wastes as a basis for preparing nutrient solutions and including NaCl in the mass exchange of the BLSS; moreover, humans are supplied with additional amounts of leafy vegetables.  相似文献   

4.
Liquid human wastes and household water used for nutrition of wheat made possible to realize 24% closure for the mineral exchange in an experiment with a 2-component version of "Bios-3" life support system (LSS) Input-output balances of revealed, that elements (primarily trace elements) within the system. The structural materials (steel, titanium), expanded clay aggregate, and catalytic furnace catalysts. By the end of experiment, the permanent nutrient solution, plants, and the human diet gradually built up Ni, Cr, Al, Fe, V, Zn, Cu, and Mo. Thorough selection and pretreatment of materials can substantially reduce this accumulation. To enhance closure of the mineral exchange involves processing of human-metabolic wastes and inedible biomes inside LSS. An efficient method to oxidize wastes by hydrogen peroxide icon a quartz reactor at the temperature of 80 degrees C controlled electromagnetic field is proposed.  相似文献   

5.
Model experiments in phytotrons have shown that urea is able to cover 70% of the demand in nitrogen of the conveyer cultivated wheat. At the same time wheat plants can directly utilize human liquid wastes. In this article by human liquid wastes the authors mean human urine only. In a long-term experiment on "man-higher plants" system with two crewmen, plants covered 63 m2, with wheat planted to--39.6 m2. For 103 days, complete human urine (total amount--210.7 l) was supplied into the nutrient solution for wheat. In a month and a half NaCl supply into the nutrient solution stabilized at 0.9-1.65 g/l. This salination had no marked effect on wheat production. The experiment revealed the realistic feasibility to directly involve liquid wastes into the biological turnover of the life support system. The closure of the system, in terms of water, increased by 15.7% and the supply of nutrients for wheat plants into the system was decreased.  相似文献   

6.
The goal of resource recovery in a regenerative life support system is maintenance of product quality to sure support of reliable and predictable levels of life support function performance by the crop plant component. Further, these systems must be maintained over extended periods of time, requiring maintenance of nutrient solutions to avoid toxicity and deficiencies. The focus of this study was to determine the suitability of the ash product following incineration of inedible biomass as a source of inorganic nutrients for hydroponic crop production. Inedible wheat biomass was incinerated and ash quality characterized. The incinerator ash was dissolved in adequate nitric acid to establish a consistent nitrogen concentration is all nutrient solution treatments. Four experimental nutrient treatments were included: control, ash only, ash supplemented to match the control treatment, and ash only quality formulated with reagent grade chemicals. When nutrient solutions were formulated using only ash following incineration of inedible biomass, a balance in solution is established representing elemental retention following incineration and nutrient proportions present in the original biomass. The resulting solution is not identical to the control. This imbalance resulted in a suppression of crop growth. When the ash is supplemented with reagent grade chemicals to establish the same balance as in the control--growth is identical to the control. The ash appears to carry no phytotoxic materials. Growth in solution formulated with reagent grade chemicals but matching the quality of the ash only treatment resulted in similar growth to that of the ash only treatment. The ash product resulting from incineration of inedible biomass appears to be a suitable form for recycle of inorganic nutrients to crop production.  相似文献   

7.
The purpose of this work was to study the full-scale potential use of human mineralized waste (feces and urine) as a source of mineral elements for plant cultivation in a biological life support system (BLSS). Plants that are potential candidates for a photosynthesizing link were grown on a neutral solution containing human mineralized waste. Spring wheat Triticum aestivum L., peas Pisum sativum L. Ambrosia cultivar and leaf lettuce Lactuca sativa L., Vitaminny variety, were used. The plants were grown hydroponically on expanded clay aggregates in a vegetation chamber in constant environmental conditions. During plant growth, a determined amount of human mineralized waste was added daily to the nutrient solution. The nutrient solution remained unchanged throughout the vegetation period. Estimated plant requirements for macro-elements were based on a total biological productivity of 0.04 kg day−1 m−2. As the plant requirements for potassium exceeded the potassium content of human waste, a water extract of wheat straw containing the required amount of potassium was added to the nutrient solution. The Knop’s solution was used in the control experiments.  相似文献   

8.
The purpose of this work was to develop technology for recycling NaCl containing in human liquid waste as intrasystem matter in a bioregenerative life support system (BLSS). The circulation of Na+ and Cl excreted in urine is achieved by inclusion of halophytes, i.e. plants that naturally inhabit salt-rich soils and accumulate NaCl in their organs. A model of Na+ and Cl recycling in a BLSS was designed, based on the NaCl turnover in the human–urine–nutrient solution–halophytic plant–human cycle. The study consisted of (i) selecting a halophyte suitable for inclusion in a BLSS, and (ii) determining growth conditions supporting maximal Na+ and Cl accumulation in the shoots of the halophyte growing in a nutrient solution simulating mineralized urine. For the selected halophytic plant, Salicornia europaea, growth rate under optimal conditions, biomass production and quantities of Na+ and Cl absorbed were determined. Characteristics of a plant production conveyor consisting of S.europaea at various ages, and allowing continuity of Na+ and Cl turnover, were estimated. It was shown that closure of the NaCl cycle in a BLSS can be attained if the daily ration of fresh Salicornia biomass for a BLSS inhabitant is approximately 360 g.  相似文献   

9.
It is very important to recycle the inedible biomass of higher plants to improve the closure of bioregenerative life support system (BLSS). Processing candidate higher plant residues into the soil-like substrate (SLS) as the plant growth medium is a promising way to achieve. In this study, three different processing techniques of SLSs, using residues of wheat and rice as feedstock, were compared. As for the first traditional technique, SLS1 was obtained by successive conversion of wheat straw by oyster mushrooms and worms. In the other two methods, SLSs were produced with aerobic fermentation (SLS2) or anaerobic fermentation (SLS3) followed by worm conversion. The changes in SLS cellulose, lignin, available elements and pH were measured during the production processes. The maturity was evaluated by the value of C/N. The fertilities were compared in terms of available elements contents and lettuce productivities. The results indicated that the second technique was optimal, whose process cycle was 30 days less than that of SLS1. The total cellulose and lignin degradation of SLS2, achieved 98.6% and 93.1% during the 93-days-processing, and the lettuce productivity reached 12.0 g m−2 day−1.  相似文献   

10.
This study compared the growth of potato plants on nutrients recycled from inedible potato biomass. Plants were grown for 105 days in recirculating, thin-film hydroponic systems containing four separate nutrient solution treatments: (1) modified half-strength Hoagland's (control), 2) liquid effluent from a bioreactor containing inedible potato biomass, 3) filtered (0.2 micrometer) effluent, and 4) the water soluble fraction of inedible potato biomass (leachate). Approximately 50% of the total nutrient requirement in treatments 2-4 were provided (recycled) from the potato biomass. Leachate had an inhibitory effect on leaf conductance, photosynthetic rate, and growth (50% reduction in plant height and 60% reduction in tuber yield). Plants grown on bioreactor effluent (filtered or unfiltered) were similar to the control plants. These results indicated that rapidly degraded, water soluble organic material contained in the inedible biomass, i.e., material in leachate, brought about phytotoxicity in the hydroponic culture of potato. Recalcitrant, water soluble organic material accumulated in all nutrient recycling treatments (650% increase after 105 days), but no increase in rhizosphere microbial numbers was observed.  相似文献   

11.
This study addresses the possibility of growing different halophytic plants on mineralized human urine as a way to recycle NaCl from human wastes in a bioregenerative life support system (BLSS). Two halophytic plant species were studied: the salt-accumulating Salicornia europaea and the salt-secreting Limonium gmelinii. During the first two weeks, plants were grown on Knop’s solution, then an average daily amount of urine produced by one human, which had been preliminarily mineralized, was gradually added to the experimental solutions. Nutrient solutions simulating urine mineral composition were gradually added to control solutions. NaCl concentrations in the stock solutions added to the experimental and control solutions were 9 g/L in the first treatment and 20 g/L in the second treatment. The mineralized human urine showed some inhibitory effects on S. europaea and L. gmelinii. The biomass yield of experimental plants was lower than that of control ones. If calculated for the same time period (120 d) and area (1 m2), the amount of sodium chloride taken up by S. europaea plants would be 11.7 times larger than the amount taken up by L. gmelinii plants (486 g/m2 vs. 41 g/m2). Thus, S. europaea is the better choice of halophyte for recycling sodium chloride from human wastes in BLSS.  相似文献   

12.
Catalytic combustion of inedible biomass of plants in ecological Life Support Systems (LSS) gives rise to gaseous oxides (CO2, NO2, SO2, etc.). Some of them are toxic for plants suppressing their photosynthesis and productivity. Experiments with "Bios-3" experimental LSS demonstrate that a decrease of photosynthetic productivity in a system with straw incineration can jeopardize its steady operation. Analysis of the situation by a mathematical model taking into account absorption parameters of the system in terms of toxic elements makes it possible to formulate requirements for the structure and operation of LSS to provide for its stability. Avenues for further investigation of the problem of toxic stability of LSS are proposed.  相似文献   

13.
Use of halophytes (salt-tolerant vegetation), in a particular vegetable Salicornia europaea plants which are capable of utilizing NaCl in rather high concentrations, is one of possible means of NaCl incorporation into mass exchange of bioregenerative life support systems. In preliminary experiments it was shown that S. europaea plants, basically, could grow on urine pretreated with physicochemical processing and urease-enzyme decomposing of urea with the subsequent ammonia distillation. But at the same time inhibition of the growth process of the plants was observed. The purpose of the given work was to find out the influence of excessive quantities of some mineral elements contained in products of physicochemical processing of urine on the production process and NaCl accumulation by S. europaea plants. As the content of mineral salts in the human liquid wastes (urine) changed within certain limits, two variants of experimental solutions were examined. In the first variant, the concentration of mineral salts was equivalent to the minimum salt content in the urine and was: K - 1.5 g/l, P - 0.5 g/l, S - 0.5 g/l, Mg - 0.07 g/l, Ca - 0.2 g/l. In the second experimental variant, the content of mineral salts corresponded to the maximum salt content in urine and was the following: K - 3.0 g/l, P - 0.7 g/l, S - 1.2 g/l, Mg - 0.2 g/l, Ca - 0.97 g/l. As the control, the Tokarev nutrient solution containing nitrogen in the form of a urea, and the Knop nutrient solution with nitrogen in the nitrate form were used. N quantity in all four variants made up 177 mg/l. Air temperature was 24 degrees C, illumination was continuous. Light intensity was 690 micromoles/m2s of photosynthetically active radiation. NaCl concentration in solutions was 1%. Our researches showed that the dry aboveground biomass of an average plant of the first variant practically did not differ from the control and totaled 11 g. In the second variant, S. europaea productivity decreased and the dry aboveground biomass of an average plant totaled 8 g. The increase of K quantity in the experimental solutions resulted in an elevated content of the element in the plants. The increase of K uptake in the second experimental variant was accompanied by a 30-50% decrease of Na content in comparison with the other variants. Comparative Na content in the other variants was practically identical. N, Mg and P content in the control and experimental variants was also practically identical. The increase of S quantity in the second experimental variant also increased S uptake by the plants. But Ca quantity, accumulated in aboveground plants biomass in the experimental variants was lower than in the control. NaCl uptake by plants, depending on the concentration of mineral salts in the experimental solutions, ranged from 8 g (maximum salt content) up to 15 g (minimum salt content) on a plant growth area that totaled 0.032 m2. Thus, high concentrations of mineral salts simulating the content of mineral salts contained in urine did not result in a significant decrease of S. europaea productivity. The present work also considers the influence of higher light intensity concentrations on productivity and NaCl accumulation by S. europaea plants grown on experimental solutions with high salt content.  相似文献   

14.
An anaerobic reactor seeded with organisms from an anaerobic lagoon was used to study the degradation of inedible crop residues from potato and wheat crops grown in a closed environment. Conversion of this biomass into other products was also evaluated. Degradation of wheat volatile solids was about 25% where that of potato was about 50%. The main product of the anaerobic fermentation of both crops was acetic acid with smaller quantities of propionate and butyrate produced. Nitrate, known to be high in concentration in inedible potato and wheat biomass grown hydroponically, was converted to ammonia in the anaerobic reactor. Both volatile fatty acid and ammonia production may have implications in a crop production system.  相似文献   

15.
This study addressed the recycle of carbon from inedible biomass to CO2 for utilization in crop production. Earlier work identified incineration as an attractive approach to resource recovery from solid wastes because the products are well segregated. Given the effective separation of carbon into the gaseous product stream from the incinerator in the form of CO2 we captured the gaseous stream produced during incineration of wheat inedible biomass and utilized it as the CO2 source for crop production. Injection rate was based on maintenance of CO2 concentration in the growing environment. The crop grown in the closed system was lettuce. Carbon was primarily in the form of CO2 in the incinerator product gas with less than 8% of carbon compounds appearing as CO. Nitrogen oxides and organic compounds such as toluene, xylene, and benzene were present in the product gas at lower concentrations (< 4 micromol mol-1); sulfur containing compounds were below the detection limits. Direct utilization of the gaseous product of the incinerator as the CO2 source was toxic to lettuce grown in a closed chamber. Net photosynthetic rates of the crop was suppressed more than 50% and visual injury symptoms were visible within 3 days of the introduction of the incinerator gas. Even the removal of the incinerator gas alter two days of crop exposure and replacement with pure CO2 did not eliminate the toxic effects. Both organic and inorganic components of the incinerator gas are candidates for the toxin.  相似文献   

16.
We use a previously-developed model of wheat growth, which was designed for convenient incorporation into system-level models of advanced space life support systems. We apply the model to data from an experiment that grew wheat under controlled conditions and measured fresh biomass and cumulated transpiration as a function of time. We examine the adequacy of modeling the transpiration as proportional to the inedible biomass and an age factor, which varies during the life cycle. Results indicate that during the main phase of vegetative growth in the first half of the life cycle, the rate of transpiration per unit mass of inedible biomass is more than double the rate during the phase of grain development and maturation during latter half of the life cycle.  相似文献   

17.
The main objective of a life support system for space missions is to supply a crew with food, water and oxygen, and to eliminate their wastes. The ultimate goal is to achieve the highest degree of closure of the system using controlled processes offering a high level of reliability and flexibility. Enhancement of closure of a biological life support system (BLSS) that includes plants relies on increased regeneration of plant waste, and utilization of solid and liquid human wastes. Clearly, the robustness of a BLSS subjected to stress will be substantially determined by the robustness of the plant components of the phototrophic unit. The aim of the present work was to estimate the heat resistance of two plants (wheat and lettuce) grown on human wastes. Human exometabolites mineralized by hydrogen peroxide in an electromagnetic field were used to make a nutrient solution for the plants. We looked for a possible increase in the heat tolerance of the wheat plants using changes in photosynthetically active radiation (PAR) intensity during heat stress. At age 15 days, plants were subjected to a rise in air temperature (from 23 ± 1 °C to 44 ± 1 °С) under different PAR intensities for 4 h. The status of the photosynthetic apparatus of the plants was assessed by external СО2 gas exchange and fluorescence measurements. The increased irradiance of the plants during the high temperature period demonstrated its protective action for both the photosynthetic apparatus of the leaves and subsequent plant growth and development. The productivity of the plants subjected to temperature changes at 250 W m−2 of PAR did not differ from that of controls, whereas the productivity of the plants subjected to the same heat stress but in darkness was halved.  相似文献   

18.
The soil-like substrate (SLS) technique is key for improving the closure of bioregenerative life support system (BLSS) by recycling the inedible biomass of higher plants. In this study, a novel SLS technique (NSLST) was proposed: aerobic fermentations at 35 °C for 1 day, then 60 °C for 6 days, finally 30 °C for 3 days, followed by earthworm treatment for 70 days. Comparing with the original SLS technique (OSLST), its process cycle was 13 days shorter, and the dry weight loss rate (81.1%) was improved by 24.77%. The cellulose and lignin degradation rates were 96.6% and 94.6%. The concentrations of available N, P and K in mature SLS were respectively 776.1 mg/L, 348.0 mg/L and 7943.0 mg/L. Low CH4 and NH3 production was observed, but no accumulation. According to the seed germination test, the SLSs were feasible for plant growth. This investigation will provide a preliminary foundation for BLSS design.  相似文献   

19.
An experimental model of matter turnover in the biotic cycle: plants (plant biomass) --> mushrooms (residual substrate + mushroom fruit bodies) --> worms (biohumus) --> microorganisms (soillike substrate) --> plants is presented. The initial mass of soillike substrate was produced from wheat plants grown in a hydroponic system. Three cycles of matter turnover in the biotic cycle were carried out. Grain productivity on soillike substrate was 21.87 g/m2 day. The results obtained were used for designing a CES containing man, plants, soillike substrate, bioregeneration module and aquaculture. It was shown, that the circulating dry mass of the CES is 756 kg. The main part (88%) of the circulating mass accumulates in the soillike substrate and bioregeneration module.  相似文献   

20.
The use of mineralized human wastes as a basis for nutrient solutions will increase the degree of material closure of bio-technical human life support systems. As stress tolerance of plants is determined, among other factors, by the conditions under which they have been grown before exposure to a stressor, the purpose of the study is to investigate the level of tolerance of chufa (Cyperus esculentus L.) plant communities grown in solutions based on mineralized human wastes to a damaging air temperature, 45 °C. Experiments were performed with 30-day-old chufa plant communities grown hydroponically, on expanded clay aggregate, under artificial light, at 690 μmol m−2 s−1 PAR and at a temperature of 25 °C. Plants were grown in Knop’s solution and solutions based on human wastes mineralized according to Yu.A. Kudenko’s method, which contained nitrogen either as ammonium and urea or as nitrates. The heat shock treatment lasted 20 h at 690 and 1150 μmol m−2 s−1 PAR. Chufa heat tolerance was evaluated based on parameters of CO2 gas exchange, the state of its photosynthetic apparatus (PSA), and intensity of peroxidation of leaf lipids. Chufa plants grown in the solutions based on mineralized human wastes that contained ammonium and urea had lower heat tolerance than plants grown in standard mineral solutions. Heat tolerance of the plants grown in the solutions based on mineralized human wastes that mainly contained nitrate nitrogen was insignificantly different from the heat tolerance of the plants grown in standard mineral solutions. A PAR intensity increase from 690 μmol m−2 s−1 to 1150 μmol m−2 s−1 enhanced heat tolerance of chufa plant communities, irrespective of the conditions of mineral nutrition under which they had been grown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号