首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper discusses photometric measurements made of the ionospheric excitation of the line λ = 5577A? at the time of electron beam injection from a rocket into the Earth's ionosphere. The gradual increase of the glow intensity per impulse occurs due to accumulation of the energy of excited states of N2(A3Σ+u) and O(′S) during their lifetimes. The large disturbed zone in the near-rocket environment (size >500 m) is connected via the interaction of ions accelerated in the rocket potential field with ionospheric components. The glow intensity modulation is observed at a height of ~98 km during the electron beam injection simultaneously with the ignition of the beam-plasma discharge (BPD). The intensity minima are explained by a decrease of the energy of accelerated ions due to effective neutralization of the rocket body by the BPD plasma. The height profile of the glow intensity revealed two maxima at heights of ~103 km and ~115 km. The second maximum (at ~115 km) indicates that, at these heights, both collision and collision-free mechanisms of accelerated ion energy transport to ionospheric components exist.  相似文献   

2.
A “mother-daughter” rocket code-named “Electron 2” was launched from And?ya, Northern Norway in November, 1978. The “daughter”, carrying a 10 keV electron accelerator, was separated from the “mother” payload with a speed of 0.4 m/s. A series of plasma diagnostic instruments were included on the “mother” to study effects produced by the interaction between the electron beam and the ionospheric plasma. Results obtained by two different plasma probes are presented. It was found that pronounced changes in the ambient electron population took place in regions penetrated by the electron beam. Estimates of the dimensions of the disturbed region are presented.  相似文献   

3.
Ion composition of the ionosphere is an important parameter of any ionospheric model. The International Reference Ionosphere-1979 includes a program for the relative ion composition computation. The program was constructed on the basis of the Danilov and Semenov /1/ empirical model, which averaged 42 rocket measurements of the ion composition at middle latitudes below 200 km, on “AEROS” satellite measurements, and on Taylor's data /2/ above that altitude.  相似文献   

4.
Electron beam experiments in space that have been done and planned in Japan are reviewed. 200eV, 1mA electron beam is emitted from a satellite and several types of wave excitation such as UHF and ωce have been observed. The satellite potential and the energy spectrum of returning electrons are measured by Langmuir probes and electrostatic energy analyser. In rocket experiments of K-10-11, K-10-12, K-9M-57, K-9M-58, K-9M-61 and K-9M-66, several types of electron guns were used whose power ranges from 1mW to 1KW. The rocket potential was measured by Langmuir probes and floating probes and optical line emission measurement and wave measurements were also done. The rocket potential was not so high as expected from the balance with ionospheric plasma but strongly affected by the plasma production by the emitted electron beam and return electrons.  相似文献   

5.
The time series of hourly electron density profiles N(h) obtained at several mid-latitude stations in Europe have been used to obtain N(h) profiles on a monthly basis and to extract both the expected bottomside parameters and a proxy of the ionospheric variability as functions of time and height. With these data we present advances on a “Local Model” technique for the parameters B0 and B1, its applicability to other ionospheric stations, to other bottomside ionospheric parameters, and to modeling the time/height variability of the profile. The Local Model (LM) is an empirical model based on the experimental results of the solar activity dependence of the daily and seasonal behavior of the above parameters. The LM improves the IRI-2001 prediction of the B0 and B1 by factor of two at mid-latitudes. Moreover, the LM can be used to simulate other ionospheric parameters and to build mean N(h) profiles and the deviations from them. The modeling of both the average N(h) profiles and their deviations is an useful tool for ionospheric model users who want to know both the expected patterns and their deviations.  相似文献   

6.
The present work is an attempt to evaluate the impact of changing space weather condition over sub-auroral ionosphere during high solar activity year 2014. In view of this, the GPS based TEC along with Ionosonde data over Indian permanent scientific base “Maitri”, Antarctica (70°46′00″S, 11°43′56″E) has been utilized. The results suggested that the nature of ionospheric responses to the geomagnetic disturbances not only depended upon the status of high latitudinal electro-dynamic processes but also influenced by the seasonal variations. The results revel both negative and positive type of ionospheric response in a single year but during different seasons. The study suggested that the combination of equator-ward plasma transportation along with ionospheric compositional changes causes a negative ionospheric impact especially during summer and equinox seasons. However, the combination of pole-ward contraction of the oval region along with particle precipitation may lead to exhibit positive ionospheric response during the winter season. The plasma transportation direction has been validated with the help of convection boundary (HM boundary) deduced with the help of SuperDARN observations. The ground based ionosonde observations clearly provided the evidence of deep penetration of high energetic particles up to the E-layer heights which results a sudden and strong appearance of E-layer. The strengthening of E-layer is responsible for modification of auroral electrojet and field-aligned current system. Also, the sudden appearance of E-layer along with a decrease in F-layer electron density suggested the dominance of NO+ over O+ in a considered region under geomagnetic disturbed condition.  相似文献   

7.
While interplanetary dust constitutes a primary source of cosmic particulate matter in planetary magnetospheres, the debris produced by its impact with small satellites and ring material provides an important secondary source. Internal processes, such as volcanic activity, particularly in the smaller satellites, could result in a third source. In the case of the terrestrial magnetosphere there are also artificial (internal) sources: 1–10μ sized A?2O3 particles injected by solid rocket mortar burns between near earth and geosynchronous orbit constitute one such source, while the fragments of larger bodies (artificial satellites) due to explosions (e.g., “killer satellites”) and collisions constitute another. Finally, if we include the purely induced cometary magnetosphere among planetary magnetospheres, the injection of cometary dust into it due to entrainment by the outflowing gases constitutes another source.As a result of being immersed in a radiative and plasma environment these dust grains get electrically charged up to some potential (positive or negative). Particularly in those regions where the magnetospheric plasma is hot and dense and their own spatial density is low, the dust grains could get charged to numerically large negative potentials.While this charging may have physical consequences for the larger grains, such as electrostatic erosion (“chipping”) and disruption, it also can effect the dynamics of the smaller grains. Indeed, the small but finite capacitance of these grains, which leads to a phase lag in the gyrophase oscillation of the grain potential, could even lead to the permanent magneto-gravitational capture of interplanetary grains within planetary magnetospheres in certain situations. Here we will review the sources of dust in planetary magnetospheres and discuss their physics and their dynamics under the combined action of both planetary gravitational and magnetospheric electromagnetic forces.  相似文献   

8.
The analysis of the behavior of the critical frequency foF2 during the 24th solar activity cycle (Danilov and Konstantinova, 2020a, c) is prolonged for two more months and the nighttime hours. In addition to the Rz and Ly-α indices used in the aforementioned papers for correction of the F10.7 index during the 24th cycle, the commonly used Mg II index is added. The results confirm the previous conclusions on the existence of the “vague” period with chaotic behavior of foF2 and the recovery of the negative trend in foF2 after 2008–2010. A comparison of the F10.7 index with three other SA indices (Ly-α, Rz, and Mg II) for the 22nd, 23rd, and 24th SA cycles is performed. It is shown that the relationship between F10.7 and other indices is close in the 22nd and 23rd cycles but differs from that in the 24th cycle. The corrected values of F10.7 in the 24th cycle are proposed for analysis of ionospheric trends during that cycle.  相似文献   

9.
The effect of the rocket exhaust products on the D-region of the ionosphere is investigated with the help of Very low frequency (VLF) electromagnetic wave propagation characteristics within the Earth-ionosphere waveguide. The changes in the electron density profile are computed from the observed VLF signal amplitude perturbations about 3 dB during the rocket launch. We find a localized electron depletion in the lower ionosphere at an altitude of around 58 km, that is thought to be originated by the attachment of ionospheric ion and molecular hydrogen along with water molecule in the exhaust product of first stage burn of Geosynchronous Launch Vehicle (GSLV) rocket at the time of GSLV launched from Sriharikota, India, on 27 August 2015 at 11:22 UT (16:52 IST). The ionospheric depletion perturbed the navigational VLF signal (VTX = 17 kHz) 134 s after the launch of the GSLV rocket.  相似文献   

10.
Ion temperature and total ion concentration measured on 25th October 1977 during the flight of the geophysical rocket “Vertical-6” are analyzed. The solar EUV fluxes determined in five wave-length bands with a photoelectron analyzer are also given. The observed anomalous variation of ion temperature between 700 and 900 km and the measured ion concentration can be explained, if the charge exchange reactions H+ ? O+ and diffusion are taken into account.  相似文献   

11.
The intensity of large-scale traveling ionospheric disturbances (LS TIDs), registered using measurements of total electron content (TEC) during the magnetic storms on October 29–31, 2003, and on November 7–11, 2004, had been compared with that of local electron density disturbances. The data of TEC measurements at ground-based GPS receivers located near the ionospheric stations and the corresponding values of the critical frequency of the ionospheric F region foF2 were used for this purpose. The variations of TEC and foF2 were similar for all events mentioned above. The previous assumption that the ionospheric region with vertical extension from 150 to 200 km located near the F-layer maximum mainly contributes to the TEC variations was confirmed for the cases when the electron density disturbance at the F region maximum was not more than 50%. However, this region probably becomes vertically more extended when the electron density disturbance in the ionospheric F region is about 85%.  相似文献   

12.
An intense Storm Enhancement Density (SED) event with the magnetic storm occurred on 17–24 March 2015 has been investigated. The morphological character of the SED during different phase of the magnetic storm is examined and compared with the non-storm time. Three intensity indexes, i.e., “general” SED index, “heavy” SED index and “severe” SED index, are defined to represent the intensity of SED respectively represented by the numbers of the ionospheric total electron content (TEC) grids with TEC > 60 TECu, TEC > 80 TECu and TEC > 100 TECu. The temporal evolution of the SED intensity indexes during a time span covering the non-storm time and the magnetic storm time have also been investigated. The SED exhibits a shape with two parallel slender troughs in the middle and low latitudes during the non-storm time and then gradually develops into an ellipse structure as the development of magnetic storm. The intensity of SED and the fluctuation of the TEC evolution are generally corresponding to the fluctuation of Dst index. The analyzing results enrich our understanding of the temporal and spatial evolution of the ionospheric SED.  相似文献   

13.
Following a feasibility study in 2000–2001 on using the EISCAT ionospheric research radars to detect centimetre-sized space debris in the frame of an ESA contract, we are now finishing a continuation study, aimed at achieving debris detection and parameter estimation in real-time. A requirement is to “piggy-back” space debris measurements on top of EISCAT’s normal ionospheric work, without interfering with that work, and to be able to handle about 500 h of measurements per year. We use a special digital receiver back-end in parallel with EISCAT’s standard receiver. We sample fast enough to correctly band-pass sample the EISCAT analog frequency band. To increase detection sensitivity, we use coherent pulse-to-pulse integration. The coherent integration is built-in in our method of parameter estimation, which we call the match function (MF) method. The method is derived from Bayesian statistical inversion, but reduces, with standard assumptions about noise and prior, to minimizing the least squares norm ∥z(t)  (R,v,a;t)∥, where z is the measured signal and {} is a set of model signals. Because the model signals depend linearly on the amplitude b, it is sufficient to maximize the magnitude of the inner product (cross correlation) between z and χ, the amplitude estimate is then determined by direct computation. The magnitude of the inner product, when properly normalized, is the MF. To construct the set of model signals, we sample the EISCAT transmission, in the same way as we sample the received signal, and apply linearly changing Doppler-shifts to it. Our initial implementation of the MF-method in 2001 was about four orders of magnitude too slow for real-time applications, but we have now gained the required speed factors. A factor of ten comes from using faster computers, another factor of ten comes from coding our key algorithms in C instead of Matlab. The largest factor, typically 100–300, comes from using a special, approximative, but in practice quite sufficient, method of finding the MF maximum. Test measurements show that we get real-time speed already when using a single dual-processor 2 GHz G5 Macintosh to do the detection computations.  相似文献   

14.
This paper investigates the ionospheric storm of December 19–21, 2015, which was initiated by two successive CME eruptions that caused a G3 space weather event. We used the in situ electron density (Ne) and electron temperature (Te) and the Total Electron Content (TEC) measurements from SWARM-A satellite, as well as the O/N2 observations from TIMED/GUVI to study the ionospheric impact. The observations reveal the longitudinal and hemispherical differences in the ionospheric response to the storm event. A positive ionospheric storm was observed over the American, African and Asian regions on 20 December, and the next day showed a negative storm. Both these exhibited hemispheric differences. A positive storm was observed over the East Pacific region on 21 December. It is seen that the net effect of both the disturbance dynamo electric field and composition differences become important in explaining the observed variability in topside ionospheric densities. In addition, we also discuss the Te variations that occurred as a consequence of the space weather event.  相似文献   

15.
We present an observational study of magnetospheric and ionospheric disturbances during the December 2006 intense magnetic storm associated with the 4В/Х3.4 class solar flare. To perform the study we utilize the ground data from North–East Asian ionospheric and magnetic observatories (60–72°N, 88–152°E) and in situ measurements from LANL, GOES, Geotail and ACE satellites. The comparative analysis of ionospheric, magnetospheric and heliospheric disturbances shows that the interaction of the magnetosphere with heavily compressed solar wind and interplanetary magnetic field caused the initial phase of the magnetic storm. It was accompanied by the intense sporadic E and F2 layers and the total black-out in the nocturnal subauroral ionosphere. During the storm main phase, LANL-97A, LANL 1994_084, LANL 1989-046 and GOES_11 satellites registered a compression of the dayside magnetosphere up to their orbits. In the morning–noon sector the compression was accompanied by an absence of reflections from ionosphere over subauroral ionospheric station Zhigansk (66.8°N, 123.3°E), and a drastic decrease in the F2 layer critical frequency (foF2) up to 54% of the quite one over subauroral Yakutsk station (62°N, 129.7°E). At the end of the main phase, these stations registered a sharp foF2 increase in the afternoon sector. At Yakutsk the peak foF2 was 1.9 time higher than the undisturbed one. The mentioned ionospheric disturbances occurred simultaneously with changes in the temperature, density and temperature anisotropy of particles at geosynchronous orbit, registered by the LANL-97A satellite nearby the meridian of ionospheric and magnetic measurements. The whole complex of disturbances may be caused by radial displacement of the main magnetospheric domains (magnetopause, cusp/cleft, plasma sheet) with respect to the observation points, caused by changes in the solar wind dynamic pressure, the field of magnetospheric convection, and rotation of the Earth.  相似文献   

16.
17.
This paper presents results pertaining to the response of the mid-latitude ionosphere to strong geomagnetic storms that occurred from 31 March to 02 April 2001 and 07–09 September 2002. The results are based on (i) Global Positioning Systems (GPSs) derived total electron content (TEC) variations accompanying the storm, (ii) ionosonde measurements of the ionospheric electrodynamic response towards the storms and (iii) effect of storm induced travelling ionospheric disturbances (TIDs) on GPS derived TEC. Ionospheric data comprising of ionospheric TEC obtained from GPS measurements, ionograms, solar wind data obtained from Advanced Composition Explorer (ACE) and magnetic data from ground based magnetometers were used in this study. Storm induced features in vertical TEC (VTEC) have been obtained and compared with the mean VTEC of quiet days. The response of the mid-latitude ionosphere during the two storm periods examined may be characterised in terms of increased or decreased level of VTEC, wave-like structures in VTEC perturbation and sudden enhancement in hmF2 and h′F. The study reveals both positive and negative ionospheric storm effects on the ionosphere over South Africa during the two strong storm conditions. These ionospheric features have been mainly attributed to the travelling ionospheric disturbances (TIDs) as the driving mechanism for the irregularities causing the perturbations observed. TEC perturbations due to the irregularities encountered by the satellites were observed on satellites with pseudo random numbers (PRNs) 15, 17, 18 and 23 between 17:00 and 23:00 UT on 07 September 2002.  相似文献   

18.
The Grahamstown, South Africa (33.3°S, 26.5°E) ionospheric field station operates a Lowell digital pulse ionospheric sounder (Digisonde) whose output includes scaled parameters derived from the measured ionogram. One of these output parameters is the ionospheric scale height parameter (H), and this paper presents an analysis of the seasonal, diurnal, and solar activity variations of this parameter over the Grahamstown station. Ionosonde data from three years 2002, 2003, and 2004 were used in this study. The data was subjected to a general trend analysis to remove any outliers and then the monthly median data were used to explore the different variations. The results of this analysis were found to be similar to what has already been presented in the literature for low latitude stations, and are presented as well as the correlation at this mid-latitude station between the H parameter, the IRI shape parameter (B0), and the peak electron density (NmF2).  相似文献   

19.
We present the spatial maps of the ionosphere–plasmasphere slab thickness τ (ratio of the vertical total electron content, TEC, to the F-region peak electron density, NmF2) during the intense ionospheric storms of October–November 2003. The model-assisted technology for estimate of the upper boundary of the ionosphere, hup, from the slab thickness components in the bottomside and topside ionosphere – eliminating the plasmasphere contribution of τ – is applied at latitudes 35° to 70°N and longitudes −10° to 40°E, from the data of 20 observatories of GPS-TEC and ionosonde networks, for selected days and hours of October and November 2003. The daily–hourly values of NmF2, hmF2 and TECgps are used as the constrained parameters for the International Reference Ionosphere extended to the plasmasphere, IRI-Plas, during the ionospheric quiet days, positive and negative storm phases for estimate of τ and hup. Good correlation has been found between the slab thickness and the upper boundary of the ionosphere for the intense ionospheric storms at October–November 2003. During the negative phase of the ionospheric storm, when the ionospheric plasma density is exhausted, the nighttime upper boundary of the ionosphere is greatly uplifted towards the magnetosphere tail, while the daytime upper boundary of the ionosphere is reduced below 500 km over the Earth.  相似文献   

20.
Fluxes of energetic solar protons penetrate deep into the Earth’s polar cap middle atmosphere. Interacting with molecules of the air they cause additional dissociation and ionization, and the formed NOx, OHy and ions enter chemical and ion-molecular reactions. Induced changes of the ionospheric D-layer are modeled by a 1D model of lower ionosphere with chemistry, using neutral species concentrations calculated by a 1D photochemical time-dependent model. Changes of the electron and ion densities, and the most important ionospheric parameters are calculated after SPE with the onset on July 14, 2000 and the results are compared with our results obtained previously for the October 19, 1989 SPE. It is shown that not only electron density increases after SPE, but also the amount of clusters. It is found that the magnitude of the ionospheric response depends on season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号