首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 581 毫秒
1.
Numerous measurements of the neutral upper atmosphere above 100 km have been made from spacecraft over Venus and over Mars. The Venus exospheric temperatures are unexpectedly low (less than 300°K near noon and less than 130°K near midnight). These very low temperatures may be partially caused by collisional excitation of CO2 vibrational states by atomic oxygen and partially by eddy cooling. The Venus atmosphere is unexpectedly insensitive to solar EUV variability. On the other hand, the Martian dayside exospheric temperature varies from 150°K to 400°K over the 11-year solar cycle, where CO2 15-μm cooling may be less effective because of lower atomic oxygen mixing ratios. On Venus, temperature increases with altitude on the dayside (thermosphere), but decreases with altitude from 100 to 150 km on the nightside (cryosphere). However, dayside Martian temperatures near solar minimum for maximum planet-sun distance and low solar activity are essentially isothermal from 40 km to 200 km. During high solar activity, the thermospheric temperatures of Mars sharply increase. The Venus neutral upper atmosphere contains CO2, O, CO, C, N2, N, He, H, D and hot nonthermal H, O, C, and N, while the dayside Mars neutral upper atmosphere contains CO2, O, O2, CO, C, N2, He, H, and Ar. There is evidence on Venus for inhibited day-to-night transport as well as superrotation of the upper atmosphere. Both atmospheres have substantial wave activity. Various theoretical models used to interpret the planetary atmospheric data are discussed.  相似文献   

2.
Measurements of radio waves that have propagated through planetary atmospheres have provided exploratory results on atmospheric constituents, structure, dynamics, and ionization for Venus, Mars, Titan, Jupiter, Saturn, and Uranus. Highlights of past results are reviewed in order to define and illustrate the potential of occultation and related radio studies in future planetary missions.  相似文献   

3.
Recent progress on measurements of isotopic ratios in planetary or satellite atmospheres include measurements of the D/H ratio in the methane of Uranus, Neptune and Titan and in the water of Mars and Venus. Implications of these measurements on our understanding of the formation and evolution of the planets and satellite are discussed. Our current knowledge of the carbon, nitrogen and oxygen isotopic ratios in the atmospheres of these planets, as well as on Jupiter and Saturn, is also reviewed. We finally show what progress can be expected in the very near future due to some new ground-based instrumentation particularly well suited to such studies, and to forthcoming space missions.  相似文献   

4.
We present the latest observations from spacecraft and ground-based instruments in search for lightning activity in the atmospheres of planets in the solar system, and put them in context of previous research. Since the comprehensive book on planetary atmospheric electricity compiled by Leblanc et al. (2008), advances in remote sensing technology and telescopic optics enable detection of additional and new electromagnetic and optical emissions, respectively. Orbiting spacecraft such as Mars Express, Venus Express and Cassini yield new results, and we highlight the giant storm on Saturn of 2010/2011 that was probably the single most powerful thunderstorm ever observed in the solar system. We also describe theoretical models, laboratory spark experiments simulating conditions in planetary mixtures and map open issues.  相似文献   

5.
The greenhouse effect of the planetary atmospheres is considered and its evolution as a result of variations in the chemical composition and in gas abundances of the atmospheres as well as in the chemical composition, size distribution and concentration of aerosol components. A computer modelling gave the values of the greenhouse effect of the atmospheres of the Earth, Mars, Venus, Jupiter, and Titan. It is shown that the atmospheric greenhouse effect plays a decisive role in the formation of the planetary climates and that it has substantially changed in the process of the planetary evolution. The greenhouse effect mechanism has always been and still is a major factor of the mean global planetary climate.  相似文献   

6.
Parameters of the best-fitting tri-axial ellipsoids representing external equipotential surfaces of Venus and Mars have been determined from satellite data. The dynamic consequence of the equatorial flattening of Venus has been discussed from the point of view of the s.c. synodic resonance rotation. The major gravitational anomalies of Venus have been interpreted, space locations and magnitudes of anomalous masses determined and their contribution to the second zonal Stokes' constant in the gravitational potential computed. The conclusions were done: The figure of the aphroditoid is strange even if there is a relatively small polar flattening; an equatorial “disc” of Venus is enormous. Recent space data do not support hypothesis that the Earth controls the spin of Venus.  相似文献   

7.
Superrotation on Venus is discussed in the context of comparative planetary atmospheres. In our planetary system, the rigid shell component (global average) of superrotation is ubiquitous (Jupiter, Saturn, Earth, Venus, Mars, Titan). The largest equatorial values of the component are between 25 and 150 m/sec. We present a simplified, heuristic analysis, utilizing mixing length theory to describe the small scale non-linear advections of energy and angular momentum, thereby providing a closure of the dynamic system. This leads to the conjecture that the zonal velocity may be crudely estimated by
, approximating the observed planetary trends; with c the speed of sound, the parameter a being 1 or 2 for geostrophic or cyclostrophic conditions respectively, Pα an effective Prandtl number which becomes less than one when radiative cooling is important, So the average stability, Γ the adiabatic lapse rate and γ the ratio of specific heats.  相似文献   

8.
陈颖  周璐  王立 《深空探测学报》2014,1(2):156-160
针对火星探测科学发现及任务创新需求,探索更先进的探测模式,提出了一种火星多模式组合探测任务设想。该任务设想的特点在于结合了轨道环绕、表面着陆、多点穿透和浮空探测,获取立体多层多源信息,一次任务实现深度科学探测。对火星开展多模式组合探测,不仅会开拓更加具有优势的火星探测新方式,发展新的探测能力和技术,也会加深对火星的全面了解,提高探测活动的综合效果。多模式探测设想不仅适用于火星,对金星、土星等地外天体探测也有很好的支撑作用。  相似文献   

9.
Hot flow anomalies (HFAs) were first discovered in the early 1980s at the bow shock of the Earth. In the 1990s these features were studied, observed and simulated very intensively and many new missions (Cluster, THEMIS, Cassini and Venus Express) focused the attention to this phenomenon again. Many basic features and the HFA formation mechanism were clarified observationally and using hybrid simulation techniques. We described previous observational, theoretical and simulation results in the research field of HFAs. We introduced HFA observations performed at the Earth, Mars, Venus and Saturn in this paper. We share different observation results of space mission to give an overview to the reader.  相似文献   

10.
利用不同版本的数值历表,对我国正在进行的探月工程以及后续的金星、火星和木星等深空探测中的导航问题进行分析和讨论。对DE405、DE421和DE430的动力学模型及其使用的观测数据进行了分析比较,考察了历表的精度和稳定性。并根据DE430历表简单讨论了木星在我国深空探测站的可视问题,为以后深空导航提供参考。简单讨论了中科院国家天文台行星无线电研究团组基于月球无线电测距(LRR)发展我国自己的历表以及开展基于月球深空导航计划的可行性。  相似文献   

11.
Just as clearly as Mariner 10 established that Mercury has an intrinsic magnetic field, the Pioneer Venus orbiter has established that Venus has no significant intrinsic field. This is perhaps the opposite of what might be expected. Mercury, a small planet might be expected to cool rapidly and its internal dynamo to cease, while Venus, which is almost as large as the Earth, should not have lost much heat. On the contrary the source of energy of the Mercury dynamo appears to be extant whereas that of Venus appears to be extinct.The existence of a Martian magnetic field is controversial. No unambiguous signature of a Martian magnetic field has been reported. If the field on the nightside of Mars is of planetary rather than solar origin the Russian Mars spacecraft observations indicate the Martian dipole lies near the planetary equator rather than its pole.  相似文献   

12.
Various types of organic compounds have been detected in Jupiter, Titan, and cometary coma. It is probable that organic compounds were formed in primitive Earth and Mars atmospheres. Cosmic rays and solar UV are believed to be two major energy sources for organic formation in space. We examined energetics of organic formation in simulated planetary atmospheres. Gas mixtures including a C-source (carbon monoxide or methane) and a N-source (nitrogen or ammonia) was irradiated with the followings: High energy protons or electrons from accelerators, gamma-rays from 60Co, UV light from a deuterium lamp, and soft X-rays or UV light from an electron synchrotron. Amino acids were detected in the products of particles, gamma-rays and soft X-rays irradiation from each gas mixture examined. UV light gave, however, no amino acid precursors in the gas mixture of carbon monoxide, nitrogen and nitrogen. It gave only a trace of them in the gas mixture of carbon monoxide, ammonia and water or that of methane, nitrogen and water. Yield of amino acid precursors by photons greatly depended on their wavelength. These results suggest that nitrogen-containing organic compounds like amino acid precursors were formed chiefly with high energy particles, not UV photons, in Titan or primitive Earth/Mars atmospheres where ammonia is not available as a predominant N-source.  相似文献   

13.
根据推进方式和是否采用金星借力,火星转移轨道分为大推力直接转移轨道、大推力金星借力转移轨道、小推力直接转移轨道和小推力金星借力转移轨道4类。传统的轨道设计方法只是针对某一类特定的转移方案进行轨道优化,而并未针对不同的转移方案进行详细对比分析。文章以2020/2022年发射窗口为例,针对4类基本火星转移轨道进行研究。首先,基于不同轨道初始设计方法,对4类轨道进行了初始设计,得到了每类转移方案的能量最优转移轨道。然后,基于设计结果和能耗对4类转移方案进行了横向对比分析,得到了不同策略下的转移轨道的特性。基于小推力的火星探测任务轨道对发射能量要求低;大推力直接转移和借力金星的发射窗口交替分布,可以互为备份;基于小推力推进的探测器采用金星借力转移策略相比直接转移能够减少10%的能耗,优势十分明显。  相似文献   

14.
A theoretical study of the production, thermalization and escape, of hot atomic hydrogen and deuterium in the exosphere of Venus is presented. The approach adopted involves the quantum mechanical calculation of the charge exchange collision cross sections for (H+, H) and (D+, H) collisions, the production of translationally energetic atoms, and their ensuing thermalization and escape from Venus. A kinetic theory which employs the quantum mechanical collision cross sections and accounts for the production, thermalization and escape of hot atoms is described. Preliminary numerical results for escape fluxes calculated with density and temperature profiles as provided from the Pioneer Venus orbiter are presented.  相似文献   

15.
We present measurements for the production of nitrogen oxides (NO and N2O) in CO2-N2 mixtures that simulate different stages of the evolution of the atmospheres of the Earth, Venus and Mars. The nitrogen fixation rates by two different types of electrical discharges, namely lightning and coronae, were studied over a wide range in CO2 and N2 mixing ratios. Nitric oxide (NO) is formed with a maximum energy yield estimated to be ~1.3 x 10(16) molecule J-1 at 80% CO2 and ~1.3 x 10(14) molecule J-1 at 50% CO2 for lightning and coronae discharges, respectively. Nitrous oxide (N2O) is only formed by coronae discharge with a maximum energy yield estimated to be ~1.2 x 10(13) molecule J-1 at 50% CO2. The pronounced difference in NO production in lightning and coronae discharges and the lack of formation of N2O in lightning indicate that the physics and chemistry involved in nitrogen fixation differs substantially in these two forms of electric energy.  相似文献   

16.
Physical properties of the Venus ionosphere obtained by experiments on the US Pioneer Venus and the Soviet Venera missions are presented in the form of models suitable for inclusion in the Venus International Reference Atmosphere. The models comprise electron density (from 120 km), electron and ion temperatures, and relative ion abundance in the altitude range from 150 km to 1000 km for solar zenith angles from 0° to 180°. In addition, information on ion transport velocities, ionopause altitudes, and magnetic field characteristics of the Venus ionosphere, are presented in tabular or graphical form. Also discussed is the solar control of the physical properties of the Venus ionosphere.  相似文献   

17.
Different versions of manned closed ecosystems (CES) based on photosynthesis of unicellular and/or higher plants and chemosynthesis or bacteria are considered. Different versions of CES have been compared for applying them on Earth, Moon, Mars and Venus orbital stations, for Mars missions and planetary stations as well as to provide high-quality life in extreme conditions on the Earth. In microgravity [correction of mycrogravity] we recommend CES with unicellular organisms based on photosynthesis or chemosynthesis (depending of the availability of the light or electric energy). For the planetary stations with Moon gravity and higher CES with higher plants are recommended. Improvement of indoor air quality by CES biotechnology is considered.  相似文献   

18.
The pattern of the magnetic field/plasma convection can be, to some extent, recovered from the magnetic field measurements by employing either theoretical or numerical models. We use the MAG/ER day-time measurements of the magnetic field at the altitudes from 90 to 180 km during the elliptical orbits of MGS. Analysis of the altitude variation of the characteristics of the large-scale magnetic fields, which were measured some distance away from strong crustal magnetic anomalies, is summarized. The low density of the Martian atmosphere together with the crustal magnetization result in critical differences in plasma convection which are followed by remarkable differences of the magnetic field features within the ionosphere of Venus and Mars (even in its northern hemisphere where the crustal magnetization is, on the average, low) and distribution of currents.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号