首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Data bases and limits of applicability of existing empirical thermospheric models are reviewed by using these models together with solar EUV irradiance data in studying the solar activity effect on composition, density and temperature. For two rather short aeronomy missions of the AEROS A and B satellites solar EUV indices as proposed by Schmidtke are used in comparison with the 10.7 cm solar flux F in determining the solar activity effect in in-situ composition measurements sampled by the same satellites at 250, 310 and 380 km altitude. No advantage of solar EUV indices over F could be determined.  相似文献   

2.
A possible quantitative explanation of the semi-annual variation in thermospheric density has been obtained in terms of a semi-annual variation in the computed globally averaged vertical energy carried by propagating tides from the lower and middle atmosphere into the thermosphere. The effect is primarily due to seasonal changes in the distribution of water vapor and in the solar declination angle and Sun-Earth distance. An MSIS-83 empirical model of the thermosphere, representing a revision of the earlier MSIS models, has been prepared. The database used covers a wider range of solar activity than previous models and an improved magnetic storm representation is included. Atomic oxygen profiles in the 100 to 160 km altitude region of the auroral thermosphere have been recalculated from measured quenching of N2(A3u+) using the latest laboratory rates and the results are in good agreement with the mean CIRA 1972 profile. A new empirical model of thermospheric variations with geomagnetic activity has been developed incorporating variations with local magnetic time, latitude dependent terms which can vary with the magnitude of the geomagnetic disturbance, and an altitude dependent expression for the equatorial wave. A new index ML, derived from the AL index, has been developed that appears to have promise to represent the variations of thermospheric species with geomagnetic activity. Satellite measured values of solar UV flux, ground-based observations of CaK plages, sunspot numbers and 10.7 cm solar radio flux have been analyzed for temporal variations. Some differences have been identified and the significance to empirical and theoretical upper atmosphere models is discussed.  相似文献   

3.
太阳活动与热层大气密度的相关性研究   总被引:3,自引:2,他引:1  
为分析太阳活动对热层大气的影响,使用250km,400km,550km高度处热层大气密度与太阳F10.7指数数据,研究了二者的周期变化及相关关系. 结果表明,热层大气密度的变化与太阳活动呈现相似的变化趋势;两者均具有显著的27天及11年周期变化特征,热层大气密度还存在7~11天及0.5年和1年的变化特征,且高度越高越明显;热层大气密度对太阳活动的最佳响应滞后为3天,无论何种地磁活动水平下,400km高度处相关性高于250km,550km处相关性最小,且太阳活动下降相期间高于上升相;250km,400km和550km高度处热层大气密度和太阳活动的统计结果分别为饱和、线性和放大关系;高度越高的热层大气密度对太阳活动响应越敏感.   相似文献   

4.
Measurements of midlatitude thermospheric neutral kinetic temperatures obtained from 1972 to 1979 have been used to investigate the effects of solar and geomagnetic activity, as well as long term effects, on the thermosphere. With these data a simple power law relationship between the temperature and solar activity (expressed as the 2.8 GHz solar radio flux) has been found to give a high correlation. In addition, a linear relationship between temperature changes and geomagnetic activity (expressed as Ap), as well as annual and semiannual effects have been found. The annual variation is found to be indistinguishable in phase from the annual variation of the solar declination angle. The present four parameter formulation gives a better fit to the data than is obtained with available empirical models of the thermosphere, and this has allowed us to investigate the properties and postulates of some of these models.  相似文献   

5.
Exospheric temperatures of several reference atmosphere are reviewed and a recommendation is made for the exospheric temperature of a proposed mean CIRA. One of the deficiencies of CIRA 72 and other present thermospheric models is the representation of density changes with geomagnetic activity. This deficiency is illustrated with samples of data. The data show the effects of geomagnetic activity, particle precipitation, a solar proton event, and gravity waves. An empirical model developed from the unique AFGL satellite density data bank using multiple linear regression is reviewed. The present model is for low to moderate solar flux and quiet geomagnetic conditions, but it is planned to extend the model to active conditions. Good progress has been made since CIRA 72 was specified in our knowledge and understanding of the properties of the lower thermosphere, although there are still some unresolved problems. The biggest progress has been made in the theory of tidal effects and of particulate energy deposition and of electrojet heating. On the other hand, it is still not possible to define adequately the systematic variations of the lower boundary conditions of thermospheric models. This is due to lack of knowledge of the systematic variations of the structure properties in the 100 to 120 km altitude region and inadequate information on the mesospheric turbulence profile and variations in the turbopause altitude.  相似文献   

6.
Traditional empirical thermospheric density models are widely used in orbit determination and prediction of low-Earth satellites. Unfortunately, these models often exhibit large density errors of up to around 30% RMS. Density errors translate into orbit errors, adversely affecting applications such as re-entry operations, manoeuvre planning, collision avoidance and precise orbit determination for geodetic missions. The extensive database of two-line element (TLE) orbit data contains a wealth of information on satellite drag, at a sufficiently high spatial and temporal resolution to allow a calibration of existing neutral density models with a latency of one to two days. In our calibration software, new TLE data for selected objects is converted to satellite drag data on a daily basis. The resulting drag data is then used in a daily adjustment of density model calibration parameters, which modify the output of an existing empirical density model with the aim of increasing its accuracy. Two different calibration schemes have been tested using TLE data for about 50 objects during the year 2000. The schemes involve either height-dependent scale factors to the density or corrections to CIRA-72 model temperatures, which affect the density output based on a physical model. Both schemes have been applied with different spherical harmonic expansions of the parameters in latitude and local solar time. Five TLE objects, varying in perigee altitude between 280 and 530 km, were deliberately not used during calibration, in order to provide independent validation. Even with a single daily parameter, the RMS density model error along their tracks can already be reduced from the 30% to the 15% level. Adding additional parameters results in RMS errors lower than 12%.  相似文献   

7.
利用NCAR-TIEGCM计算了第23太阳活动周期间(1996—2008年)400km高度上的大气密度,并统计分析大气密度对太阳辐射指数FF10.7的响应.结果表明,在第23太阳活动周内,大气密度的变化趋势与太阳辐射指数FF10.7的变化趋势基本一致,但是大气密度在不同年份、不同月份对太阳辐射指数FF10.7的响应存在差异.第23太阳活动周内太阳辐射极大值和极小值之比大于4,而大气密度的极大值与极小值之比则大于10.太阳辐射低年的年内大气密度变化不到2倍,而太阳辐射高年的年内大气密度变化可达2倍甚至3倍.大气密度与FF10.7指数在北半球高纬的相关系数比南半球高纬的相关系数大.在低纬地区,太阳辐射高年大气密度与FF10.7指数的相关系数比低年的大.不同纬度上,大气密度与太阳辐射指数FF10.7的27天变化值之间的相关系数都大于其与81天变化值之间的相关系数.   相似文献   

8.
During the last solar activity minimum, a great deal of very precise total density data was obtained in the equatorial regions from the CACTUS accelerometer experiment. Due to the eccentricity of the orbit, it is also possible to determine a density scale height by considering that the density profiles between the perigee (270 km) and 400 km are quasi-vertical. Densities and density scale heights are analysed during magnetic storms and their variations are compared with their behaviour during quiet periods. For densities as well as for scale heights, an asymmetrical structure in latitude and longitude is exhibited with respect to the magnetic equator. Their values are relatively higher in the northern hemisphere than in the southern one. The hypothesis (previously suggested) of a greater energy input in the southern hemisphere inducing asymmetrical winds, explains the results well.  相似文献   

9.
本文对Chapman阳光掠射函数[Ch(z_p,χ)]进行了数值积分,求得了其在实际模式大气中随观测高度z_p及天顶角χ的变化.计算并讨论了低热层高温度梯度、分子与湍流扩散、重力场及太阳活动对 Ch(z_p,χ)的影响.结果表明,在150 km以下,Ch(z_p,χ)与前人用等标高模式及等标高梯度模式的计算结果差别较大.其中高温度梯度的影响起主导作用.特别是太阳活动对Chapman函数影响较显著,高年与低年之间可变化10—40%(在大天顶角时),这有可能推动热层大气中辐射-光化学-动力学耦合关系的变化.  相似文献   

10.
对2003年(太阳活动较高年)至2007年(太阳活动低年) CHAMP卫星的热层大气密度观测数据进行了经验正交函数(EOF)分析, 得到了400 km高度上白天平均大气密度ρ的太阳活动周变化与年度变化等不同变化分量. 研究结果表明, ρ受太阳活动影响较大, 其太阳周变化分量与F10.7指数变化之间的相关系数可高达94.5 %; ρ的太阳周变化分量随纬度增加而减小, 且在中高纬地区, 南半球的值明显大于北半球的值, 在低纬地区则出现基本对称的双峰分布, 即赤道质量密度异常(EMA)结构. 在ρ的年变化中, 呈现出明显的季节变化, 即夏季低冬季高; 同时ρ的年变化幅度随太阳活动增加而增强, 随纬度增加而增强. 将本文结果与经验模式NRLMSISE00在观测条件下的输出数据进行对比, 发现两者的太阳周变化与年变化分量基本一致, 但本文观测数据的太阳周成分随纬度变化略小, 年变化幅度略大, 且NRLMSISE00模式不能再现EMA结构. 研究结果对揭示热层气候学变化特征具有重要意义.   相似文献   

11.
We investigate the intra-annual variations of globally averaged thermospheric density at 400 km altitude from 1996 to 2006 by using Artificial Neural Network Method (ANNM). The results indicate that thermospheric density is governed by solar activity, and the absolute error of our model is 13.67%, less than NRLMSISE-00 model. Fourier representation can catch the intra-annual variations more accurately than NRLMSISE-00 model and JB2008 model especially during 2002. We find that the Autumn maximum is slightly greater than Spring maximum during solar minimum, while the reverse is correct during solar maximum. There is a strong linear relation between solar activity and the amplitude of annual/semiannual variations, and the correlation coefficients are 0.9534 and 0.9424, respectively. Moreover, the amplitude ratio of the annual to semiannual variation is about 1.3 averaged, and changes in different years, but it has little relation with solar activity. Besides that, the amplitude of annual variation is larger than semiannual variation during 1996 and 2006 except 1998 and 2000. The relative error of NRLMSISE-00 model is 14.95%, decreasing to 12.49% after revising, and the correlation coefficients between this empirical model and its improved results and the observation are 0.8185 and 0.9210, respectively. Finally, we suggest the revised version of MSIS series of model should use the Fourier representation to express the intra-annual variations.  相似文献   

12.
Numerous measurements of the neutral upper atmosphere above 100 km have been made from spacecraft over Venus and over Mars. The Venus exospheric temperatures are unexpectedly low (less than 300°K near noon and less than 130°K near midnight). These very low temperatures may be partially caused by collisional excitation of CO2 vibrational states by atomic oxygen and partially by eddy cooling. The Venus atmosphere is unexpectedly insensitive to solar EUV variability. On the other hand, the Martian dayside exospheric temperature varies from 150°K to 400°K over the 11-year solar cycle, where CO2 15-μm cooling may be less effective because of lower atomic oxygen mixing ratios. On Venus, temperature increases with altitude on the dayside (thermosphere), but decreases with altitude from 100 to 150 km on the nightside (cryosphere). However, dayside Martian temperatures near solar minimum for maximum planet-sun distance and low solar activity are essentially isothermal from 40 km to 200 km. During high solar activity, the thermospheric temperatures of Mars sharply increase. The Venus neutral upper atmosphere contains CO2, O, CO, C, N2, N, He, H, D and hot nonthermal H, O, C, and N, while the dayside Mars neutral upper atmosphere contains CO2, O, O2, CO, C, N2, He, H, and Ar. There is evidence on Venus for inhibited day-to-night transport as well as superrotation of the upper atmosphere. Both atmospheres have substantial wave activity. Various theoretical models used to interpret the planetary atmospheric data are discussed.  相似文献   

13.
In this work, the daily height variations of SZ-5 (Shenzhou-5) cabin from 22 October to 28 November in 2003 are analyzed, which includes the period of the Halloween Storm and the Great November Storm. The significant orbital decays have been observed at the end of October and in late November due to the great solar flares and the severe geomagnetic storms. According to the equation of the air-drag-force on a spacecraft and the SZ-5 orbital decay information, the relative daily average thermospheric density changes during the three 2003 super-storms are derived and the results are compared with the Naval Research Laboratory Mass Spectrometer Incoherent Scatter Radar Extended Model (NRLMSISE-00). The results show that the daily average thermospheric density (at the altitude of SZ-5, about 350 km) in storm time enhances to approximately 200% as much as that in the quiet time but the empirical model may somewhat underestimate the average thermospheric density changes and the daily contributions of geomagnetic storms to the density enhancements during these severe space weather events.   相似文献   

14.
The different types of variation in the thermosphere are briefly examined and the solar-activity effect is singled out for special attention. To this day, empirical models have made use of the decimetric solar flux F10.7 as an index of the variable XUV radiation from the sun. To account for the change in the relative intensity of the different types of emissions in the course of the solar cycle, F10.7 is made to perform double duty: The daily values are used to represent the day-to-day and “27-day” variations, while its averages over several solar rotations are used to represent the variations with the 11-year cycle. The availability of direct solar XUV data should eventually eliminate the need for such a make-shift procedure. Accuracy and continuity requirements of XUV intensity measurements are discussed and a strategy is outlined for sorting out the relevant features from the observational material and putting them to practical use in thermospheric modeling. It is suggested that future models of the diurnal and the geomagnetic variation use as a guide theoretical models which have achieved considerable success in qualitatively representing the observed phenomena.  相似文献   

15.
Monthly variations of averaged nighttime thermospheric winds have been investigated over Abuja, Nigeria (Geographic: 9.06°N, 7.5°E; Geomagnetic: 1.60°S). The reports are based on Fabry-Perot interferometer measurements of Doppler shifts and Doppler broadening of the 630.0 nm spectral emission. The results were obtained during a period of weak solar activity with the solar flux (F10.7) typically below 70 solar flux units. Inspection of the average monthly thermospheric winds from October 2017 to December 2017 found December meridional winds to be more equatorward than the October and November winds. Zonal winds are eastward with pre-midnight maximum speeds going above 100 m/s. Compared to Jicamarca zonal winds in the Peruvian sector for the same month of October, the magnitude of maximum Abuja zonal wind speed is weaker. We compare the observed diurnal variation with the recently updated Horizontal wind model (HWM 14). Most of the observational features of thermospheric wind diurnal variation are captured in the model variation. The HWM14 generally showed good agreement with the Abuja October and November zonal wind observations but overestimates the December meridional winds. Expected longer period analysis of the results from Abuja will stimulate a better understanding of wind climatology over the West African sector.  相似文献   

16.
Neutral exospheric and lower thermospheric (100–130 km) temperatures from Thomson scatter measurements at Millstone Hill (42°N) are compared with CIRA temperatures with a view towards identifying deficiencies in the CIRA and recommending revisions. CIRA models the observed diurnal mean temperatures (T0) to within 10% over a wide range of solar conditions (75? F10.7 ? 250), but consistently underestimates the diurnal temperatures with maximum deviations approaching 50% of observed amplitudes (180–240 K) at solar maximum (1200 K ? T0 ? 1400 K). The observed semidiurnal amplitudes, which lie in the range of 20K–80K, are always underestimated and frequently by more than 50%. In the lower thermosphere, tidal oscillations of temperature of order 20K–40K occur which are not modelled by CIRA. In addition, an analysis of exospheric temperatures at Millstone Hill during a magnetic disturbance indicates a response within 1–2 hours from storm onset, whereas CIRA assumes a 6.7 hour delay. Although some of these deficiences are addressed by the more recent MSIS model, there exists a sufficient data base to recommend several additional revisions to the CIRA temperatures at this time.  相似文献   

17.
Physical properties of the Venus ionosphere obtained by experiments on the US Pioneer Venus and the Soviet Venera missions are presented in the form of models suitable for inclusion in the Venus International Reference Atmosphere. The models comprise electron density (from 120 km), electron and ion temperatures, and relative ion abundance in the altitude range from 150 km to 1000 km for solar zenith angles from 0° to 180°. In addition, information on ion transport velocities, ionopause altitudes, and magnetic field characteristics of the Venus ionosphere, are presented in tabular or graphical form. Also discussed is the solar control of the physical properties of the Venus ionosphere.  相似文献   

18.
An empirical model of electron temperature (Te) for low and middle latitudes is proposed in view of IRI. It is constructed on the basis of experimental data obtained at 100 to 200 km by probe and incoherent scatter methods. Below 150 km the model gives two Te values: one from incoherent scatter data and another from probe measurements. The model can be used for all seasons for quiet geomagnetic conditions (Kp not greater 3) and at almost all levels of solar activity (F10.7 between 70 and 200). It is presented in an analytical form that allows one to calculate Te profiles for different latitudes, longitudes and at any season (day). Depending on geomagnetic latitude and solar zenith angle, electron temperature distributions are presented for two heights along with Te profile variations during the day (at middle latitudes).  相似文献   

19.
Global modeling of M(3000)F2 and hmF2 based on three alternative EOF (empirical orthogonal function) expansion methods is described briefly. Data used for the model construction is the monthly median hourly values of M(3000)F2 from the ionosonde/digisonde stations distributed around the world for the period of 1975–1985 and the hmF2 data of the same period converted from the measured M(3000)F2 based on the strong anti-correlation existing between them. Independent data of a low (1965) and a high (1970) solar activity year are used to validate the three alternative models based on different EOF expansion methods. Comparisons between the modeled results and observed data for both the low (1965) and high (1970) solar activity years showed good agreement for both M(3000)F2 and hmF2 parameters. Statistical analysis on the differences between model values and observed data showed that all the three alternative models (Model A, B and C) based on the different EOF expansion methods have better agreement with the observed data than the models currently used in IRI. All three alternative EOF based models have almost the same accuracy. Discussion on the preference of the three alternative EOF based models is given.  相似文献   

20.
一种基于温度参数的热层密度修正方法   总被引:2,自引:1,他引:1  
热层大气的阻力效应是影响低轨航天器大量空间操作的重要因素, 尤其是经验密度模式, 其固有的至少15%的内符合误差已严重制约航天器轨道计算精度的提高. 针对广泛应用的经验密度模式, 选择物理背景简明、关联参数较少的JACCHIA71模式, 以地磁平静条件下的全球散逸层顶温度最小值Tc及125 km高度拐点温度Tx为对象, 建立密度相对于上述温度参数的条件方程, 推导密度相对于温度参数的解析偏导数, 并给出其最小二乘解. 同时, 利用CHAMP卫星数据对模式进行修正, 模式平均误差从40%降低至3%左右. 通过TG01飞行器的轨道预报比较, 修正前后轨道预报位置精度从2 km提升至1 km左右. 经过CHAMP卫星和TG01飞行器的实测数据检验, 验证了修正算法的正确性和有效性.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号