首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
低轨道航天器的表面充电模拟   总被引:1,自引:0,他引:1  
为研究航天器表面材料在空间环境中的充电现象, 利用SPIS (Spacecraft Plasma Interaction System)模拟了航天器在低轨道等离子体环境中的表面充电情况, 通过对模拟结果进行分析并与实际观测进行比较, 可以看出模拟结果基本能够反映出不同性质材料之间的充电差别, 特别是导电材料与非导电材料之间的充电差别. 模拟得到的充电电位及充电时间与充电的一般理论计算结果符合较好, 且能够清晰反映出航天器运动中产生的冲击流及尾流的结构特征. 根据SPIS低轨道航天器表面充电模拟的特点, 认为SPIS的模拟结果是合理的.   相似文献   

2.
精确的金属材料二次电子发射系数模型对于计算空间大功率微波部件的微放电功率阈值至关重要,而现有的二次电子发射系数模型在准确性和工程应用两方面不能兼顾。通过分析二次电子的逸出几率,结合修正的Bethe能量损失规律,建立了金属材料二次电子发射系数的解析模型。进一步以未清洗的和Ar离子清洗过的Ag材料为例,用解析模型对试验测量值进行了拟合,在获得解析模型中关键参数的基础上建立了Ag材料二次电子发射系数模型。计算结果显示,在不同入射角度下未清洗和清洗Ag 材料的模型计算值与试验值的均方差在4%以内,表明提出的解析模型在减少拟合参数的基础上能够获得具体金属材料精确的二次电子发射系数模型,可用于精确模拟空间大功率微波部件的微放电功率阈值和加速器内部的电子云浓度。  相似文献   

3.
介质材料的动态特性是二次电子发射特性研究中的重要组成部分。通过数值模拟方法建立有效二次电子收集效率模型,可研究多种测量参数对介质动态特性的共同作用。模拟结果表明,空间电场和收集极结构对有效二次电子收集极效率的影响有一定相关性,收集极电位增大能提高有效二次电子收集效率,而动态过程中的半高宽时间则线性增加。另外收集极结构变化能够影响空间电场的作用效果。二者通过直接影响收集效率,间接改变表面电荷积累来引起动态特性的变化。入射束流则可直接影响表面电荷积累速度,使得半高宽时间线性增加或减小。研究结果对于揭示介质材料带电产生的动态过程以及指导实验准确测量二次电子发射系数具有科学意义。  相似文献   

4.
针对二次电子发射系数对空间行波管收集极效率的影响,通过降低二次电子发射系数的方法,提高收集极的效率。并以无氧铜为例,使用化学刻蚀的方法对无氧铜样片进行表面处理,得到规则微孔阵列结构。使用二次电子发射测试平台对有无表面处理的无氧铜样片进行测量。测量结果显示,经化学刻蚀处理后的样片的最大二次电子发射系数由1.33减小到0.96,二次电子发射抑制效果明显。将测得的两个二次电子发射系数曲线用于空间行波管收集极的模拟设计中。选用已有的3个收集极结构模型,使用模拟软件进行仿真并计算收集极效率。结果表明,3个收集极结构模型的效率分别由原来的80.1%、57.5%、42.1%提高到82.55%、62.6%、59.2%。该结果对于空间行波管收集极的设计具有重要参考价值。  相似文献   

5.
为解决电子倍增器、场发射阴极和粒子/光子探测器现有阴极材料次级发射系数低且发射不稳定的问题,对微波等离子体化学气相沉积(MicrowavePlasmaChemicalVaporDeposition,MPCVD)法结合H等离子体表面处理工艺制备的不同B2H6/CH4浓度的硼掺杂金刚石薄膜的次级发射能力进行了研究。样品表面扫描电子显微镜和拉曼光谱分析结果显示,硼掺杂金刚石膜表面形貌与未掺杂的金刚石膜相似,样品表面均为高纯度的金刚石相。将置于空气中数日且未经任何表面处理的硼掺杂金刚石样品进行次级电子发射性能测试,结果显示一次电子入射能量为1keV时,得到高达18.3的二次电子发射系数。试验证实这种具有高二次电子发射系数的硼掺杂金刚石膜,暴露空气中由于表面氧化会破坏其表面的负电子亲和势,而真空中加热会使表面重新恢复负电子亲和势,这种负电子亲和势的完整保留,提高了该材料次级发射的稳定性,在器件中具有重要的应用前景。  相似文献   

6.
现有关于介质微波部件微放电的相关研究多从谐振条件及出射电子产额方面出发分析微放电发生原因及其抑制方法,而很少分析航天器表面电位对于微放电发生的影响。文章对碰撞电子与介质表面相互作用后二次电子发射特性进行综合分析;重点研究了不同介质表面初始电位情况下,恒定能量的电子束流持续轰击介质表面时介质表面电位及电子束流碰撞能量的变化趋势;并对稳定后的电子束流碰撞能量和介质表面电位进行了理论计算,计算结果表明系统平衡状态时的表面电位受初始电子能量及第二临界能量影响有明显改变。此外,文章探究了单一能量及连续能量入射介质表面时表面带电对于二次电子发射的影响,研究表明:带有电位φ的表面会使临界能量发生偏移量-eφ的相对偏移;对于连续能量的入射电子束,介质表面带电会很大程度上改变入射电子束的能量范围,从而影响微放电发生的风险。  相似文献   

7.
本文采用局部电流平衡模型,在无光照条件下,对不同表面材料、不同几何形体的航天器充电情况进行了计算.计算得到的最大负电位代表在同步轨道上飞行的航天器充电时可能达到的最坏情况.计算还得到某些航天材料可能出现多重带电的现象.   相似文献   

8.
基于Geant 4软件建立一种用于计算航天器内部充电所产生电场的方法.分析载有IDM仪器的CRRES卫星当时所处的空间电子环境,使用该方法进行内部充电模拟,并将模拟结果与IDM仪器所测得的放电脉冲数据进行对比,不仅验证了该方法的有效性,更重要的是深入认识了引起航天器内部充电的空间环境特征以及材料特性对充放电效应的影响.介质内最大电场的模拟计算结果与CRRES卫星实际观测到的放电现象吻合;在材料的各项参数中,与辐射感应电导率有关的kp系数对稳态电场有很大影响,为了定量研究内部充电效应,需要在实验室精确地测定kp系数;材料的暗电导率、密度以及材料的分子构成等也与内部充电效应有关,对这些参数细致地研究有助于对内部充电效应的认识.   相似文献   

9.
随着微放电效应研究的不断深入,低能电子影响在微放电过程中越来越不可忽视。当前常用的微放电模型在处理低能电子问题上具有一定的局限性,为了精确模拟这一过程,在深入研究二次电子和背散射电子发射理论的基础上,分别针对材料表面条件不同引起的二次电子发射系数不确定性、低能电子的背散射系数以及电子入射角等问题进行了分析和讨论,并在此基础上建立了一个二次电子发射模型,最后通过数值计算讨论了模型的正确性和适用范围。这一模型同时考虑材料表面条件参数、低能电子的背散射系数以及入射角等因素影响,能够兼容较低能量电子的二次发射,提升微放电数值模拟的精确度和适用性,为微放电数值模拟的发展起到推进作用。  相似文献   

10.
空间等离子体环境诱发的表面充电效应会对航天器运行产生干扰,严重时将导致太阳电池等部件失效。通过神经网络反演方法,以GEO环境中介质表面充电电位曲线作为输入,在双峰麦克斯韦分布假设下,可以逆向得到高能峰的等离子体参数。分析了GEO等离子体环境参数对表面充电电位曲线的影响,表明高能峰在充电过程中起决定性作用;其次通过MATLAB搭建BP神经网络,采用COMSOL计算得到多组充电曲线进行网络训练和反演计算,得到等离子体密度反演的平均相对误差为0.42%,温度反演的平均相对误差为0.03%,整体误差在0.1%~5.6%。结果表明,采用神经网络对等离子体环境进行反演具有可行性,该方法可以作为空间等离子体环境探测结果的对比参考和航天器非探测点表面电位计算的输入条件。  相似文献   

11.
太阳帆板驱动机构的表面充放电效应研究   总被引:4,自引:2,他引:2       下载免费PDF全文
空间等离子体环境效应导致的卫星表面充放电是造成卫星在轨工作异常及故障的重要原因之一. 太阳帆板驱动机构(Solar Array Drive Assembly,SADA)是长寿命、大功率卫星电传输环节的关键部件,易成为充放电效应的对象,可使卫星丧失能源,导致整星失效. 为验证空间等离子体环境导致的表面充放电对SADA特别是其功率传输可靠性和安全性的影响,利用等离子体环境模拟试验装置,模拟地球同步轨道(Geostationary Orbit,GEO)等离子体环境,针对SADA进行试验研究. 结果表明,使用两种不同绝缘材料的SADA在空间等离子体模拟环境下表现没有明显区别,表面充放电未对设计合理的SADA正常工作造成明显影响. 研究结果对未来GEO轨道SADA等空间机构的可靠性和安全性设计具有一定指导意义.   相似文献   

12.
航天器表面充电研究表明充电状态与空间电环境和航天器自身情况有着极为密切的关系。空间电环境是导致航天器表面充电的直接客观原因,它受太阳活动和地磁活动的强烈影响。研究空间电环境状态是认识航天器表面充电原因的基础。本文对已提出的许多空间电环境模型作了较为全面的综述和讨论  相似文献   

13.
The remote charging of a passive object using an electron beam enables touchless re-orbiting of large space debris from geosynchronous orbit (GEO) using electrostatic forces. The advantage of this method is that it can operate with a separation distance of multiple craft radii, thus reducing the risk of collision. The charging of the tug–debris system to high potentials is achieved by active charge transfer using a directed electron beam. Optimal potential distributions using isolated- and coupled-sphere models are discussed. A simple charging model takes into account the primary electron beam current, ultra-violet radiation induced photoelectron emission, collection of plasma particles, secondary electron emission and the recapture of emitted particles. The results show that through active charging in a GEO space environment high potentials can be both achieved and maintained with about a 75% transfer efficiency. Further, the maximum electrostatic tractor force is shown to be insensitive to beam current levels. This latter later result is important when considering debris with unknown properties.  相似文献   

14.
空间辐射环境中高能电子诱发的介质材料深层充放电效应是威胁航天器安全的重要因素之一. 本文采用不同束流强度的电子枪电子, 研究了不同厚度的聚酰亚胺薄膜的深层充电过程; 利用Sr90放射源电子模拟GEO轨道高能电子环境, 研究了在其辐照下聚甲醛树脂和聚四氟乙烯材料的表面电位变化; 实验观测了深层放电产生的电流脉冲和电场脉冲. 提出了深层充电模型, 较好地模拟了实验测量结果, 并且分析了深层充电平衡电位和平衡时间随电子束流强度和介质电阻率的变化规律. 实验和数值模拟结果初步揭示了深层充放电效应的特征及规律, 表明深层充电现象随着电子束流强度和介质电阻率的增加而趋于明显, 介质电阻率是影响深层充电平衡电位和平衡时间的主要因素.   相似文献   

15.
几种材料的磁层亚暴环模试验   总被引:1,自引:0,他引:1  
<正> 一、引言星际空间存在运动着的带电粒子。当太阳风粒子到达地球磁层顶且随着太阳风粒子而来的星际磁场,指向地磁南极时,太阳风中的感应电流产生的附加场使地磁场发生畸变。迎着太阳的一面较为扁平,而背着太阳的一面形成一个很长的磁尾。在磁尾区,太阳风粒子的注入(它们的能量为几十电子伏到几千电子伏)引起了高能粒子的大量增加。这些高能粒子在  相似文献   

16.
航天器介质深层充电模拟研究   总被引:1,自引:1,他引:0  
针对航天器介质深层充电问题,提出了一种基于蒙特卡罗模拟和充电动力学RIC模型的介质电荷分布及电场预估新方法,利用地面试验验证了其正确性.航天器介质平板充电过程被简化为屏蔽铝板与分层介质组成的Geant 4模型,通过统计方法计算出了实际入射束流下Teflon介质内的注入电流密度和剂量率分布曲线,利用RIC模型获得了背面接地时介质中的电荷密度和电场分布,利用脉冲电声法(PEA)对不同束流密度辐照下的Teflon内部空间电荷密度进行了测量.数值模拟和地面试验结果表明,Teflon在100 keV能量电子辐照下,电荷密度和电场随着束流密度的增加而不断增大,其电荷密度峰值位置约为0.042 mm,且背面接地时接地侧电场最大.由于Geant 4粒子输运模拟和RIC模型具有通用性,因此该方法适用于各种航天器介质材料.   相似文献   

17.
本文报道了RTV-Ⅱ黑漆和13-17白色涂层二种航天器温控材料的电导在综合空间环境条件下的实验结果。实验表明RTV-Ⅱ涂层材料的电导从1984年到1986年,几乎每年下降一个量级,因而充电状态明显改变。13-17涂层材料的电导对空间真空环境响应不明显,但对电子辐照和光辐照响应显著,尤其对光辐照存在强烈的记忆效应。预测该涂层在轨道上由光照区进入星蚀区也不会出现明显充电现象。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号