首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
The Rapid Burster is known to show rapidly repetitive bursts (Type II bursts). An interesting feature of the Type II burst is an approximate proportionality of the burst duration to the time to the next burst. The time sequence from a burst to the following quiescent phase can be said to be a time-scale invariant high (burst phase)–low (quiescent phase) transition. The Galactic superluminal source, GRS 1915+105 exhibits a variety of the time variation of the X-ray flux and often repeats transitions between a high-flux level and a low-flux level. In such high–low transitions, Belloni et al. (1997b) found an approximate proportionality between the duration of the low-flux phase and that of the following high-flux phase, over a wide range of the time scale. This low–high transition can again be said to be time-scale invariant. However, an interesting difference between the two time scale invariant transitions is an opposite order of the high and low-flux phase in the time-scale invariant sequence. In the case of the Rapid Burster, the high-flux (burst) phase is the first, while the low-flux phase is the first in the case of GRS1915+105. A limit cycle between an accretion disk in a state of the standard-disk and that in a state of the ADAF (advection dominated accretion flow) is discussed to explain the time-scale invariant high–low (or low–high) transition as well as the difference between the neutron star system and the black-hole system, qualitatively. A phenomenological relation of the accretion disk change with mass ejections from the central part of the disk is also discussed.  相似文献   

2.
We present a series of monitoring observations of the ultrasoft broad-line Seyfert galaxy RE J2248-511 with XMM-Newton. Previous X-ray observations showed a transition from a very soft state to a harder state five years later. We find that the ultrasoft X-ray excess has re-emerged, yet there is no change in the hard power-law. Reflection models with a reflection fraction of 15, and Comptonisation models with two components of different temperatures and optical depths (kT1 = 83 keV, T1 = 30 eV, τ1 = 0.8; KT2 = 3.5 keV, T2 = 60 eV, τ2 = 2.8) can be fit to the spectrum, but cannot be constrained. The best representation of the spectrum is a model consisting of two blackbodies (kT1 = 0.09 ± 0.01 keV, kT2 = 0.21 ± 0.03 keV) plus a power-law (Γ = 1.8 ± 0.08). We also present simultaneous optical and infrared data showing that the optical spectral slope also changes dramatically on timescales of years. If the optical to X-ray flux comes primarily from a Comptonised accretion disk we obtain estimates for the black hole mass , accretion rate and inclination cos(i)  0.8 of the disk.  相似文献   

3.
In this study we explore physical scaling laws applied to solar nanoflares, microflares, and large flares, as well as to stellar giant flares. Solar flare phenomena exhibit a fractal volume scaling, V(L)  L1.9, with L being the flare loop length scale, which explains the observed correlation between the total emission measure EMp and flare peak temperature Tp in both solar and stellar flares. However, the detected stellar flares have higher emission measures EMp than solar flares at the same flare peak temperature Tp, which can be explained by a higher electron density that is caused by shorter heating scale height ratios sH/L ≈ 0.04–0.1. Using these scaling laws we calculate the total radiated flare energies EX and thermal flare energies ET and find that the total counts C are a good proxy for both parameters. Comparing the energies of solar and stellar flares we find that even the smallest observed stellar flares exceed the largest solar flares, and thus their observed frequency distributions are hypothetically affected by an upper cutoff caused by the maximum active region size limit. The powerlaw slopes fitted near the upper cutoff can then not reliably be extrapolated to the microflare regime to evaluate their contribution to coronal heating.  相似文献   

4.
The work we present deals with the spectrometric measurements of VIRTIS instrument of the Comet P/Wirtanen planned for the Rosetta mission. This spectrometer can monitor (VIRTIS M channel: 0.250μm – 0.980μm; Δκ=20cm−1; 0.980 – 5.0 μm; Δκ = 5cm−1; VIRTIS H channel: 2.0 μm – 5.0 μm; Δκ=2cm−1) the nucleus and the coma in order to provide a general picture of coma's composition, the production of gas and dust, the relationship of coma production to surface composition and the structure and variation of mineralogy of the nucleus surface. During the mission the observation conditions of the spectroscopic investigation change due to different relative positions spacecraft/comet, and to the different illumination conditions of the surface at various distances of the comet to the Sun. The nucleus surface is continuously modified by the ice sublimation accompanied by gas and dust emission. Consequently the surface also its spectrophotometric properties changes and their monitoring can give a new insight. The important role of simulations is to predict the results of measurements in various experimental condition what, in the future, can help in interpretation of the measured data.

In this paper the first results of our simulation the radiance from the comet in the 0.25–5.0μm spectral range at two distances from the Sun (1AU and 3AU) are shown. The distance between the Rosetta orbiter and the nucleus surface as well as the sun zenith angles are taken into account according to the Rosetta mission phases. In fact the surface and coma properties vary along the comet orbit, and should be taken into account in our calculations. The optical parameters of the dust on the surface (e.g. reflectance) and in the coma (e.g. Qext) were calculated from optical constants of possible comet analogues. The thermodynamic parameters of the comet are taken from the models of comet evolution. Through this kind of modelling it is possible to identify the surface characteristics in spectra of the radiation from the surface of nucleus transmitted through the coma loaded with dust and gases.

Even if the “Rosetta mission” is postponed, with the consequence of a target change, we think that our idea and the method used for the simulations can be useful also for the new Rosetta target - the comet 67P/Churyumov Gerasimenko.  相似文献   


5.
The multiple scattering of solar radiation in the cometary atmosphere is treated with the method of successive scattering. Referring to in situ measurements of comet Halley about the size and spatial distributions of dust, the optical thickness τ1 of dust has been estimated, i.e. τ1=0.03 at wavelength λ=0.62μm in a quiet time, but τ1=0.3 when the outbursts/jets occur. In the derivation of τ1, optical properties of dust including a mixing ratio of absorbing to silicate grains, are determined based on the polarimetry of P/Halley at λ=0.62μm observed during the phase angles over Nov. 1985 to May 1986 at the Dodaira Station of Tokyo Astronomical Observatory.

It is found that a temporary enhancement of τ1 leads an increase of the upward reflected intensity when the surface albedo A of the nucleus is less than 0.04, but the reverse is true when A>0.04. On the other hand, the intensity of the downward radiation at the surface of the nucleus always decreases as an increase of τ1.  相似文献   


6.
We describe the design and calibration of the Far-Infrared Photometer (FIRP), one of four focal plane instruments on the Infrared Telescope in Space (IRTS). The FIRP will provide absolute photometry in four bands centered at 150, 250, 400, and 700 μm with spectral resolution λ/Δλ ≈ 3 and spatial resolution ΔΘ = 0.5 degrees. High sensitivity is achieved by using bolometric detectors operated at 300 mK in an AC bridge circuit. The closed-cycle 3He refrigerator can be recycled in orbit. A 2 K shutter provides a zero reference for each field of view. More than 10% of the sky will be surveyed during the ≈3 week mission lifetime with a sensitivity of <10−13 W·cm−2·sr−1 per 0.5 degree pixel.  相似文献   

7.
The paper describes behavior of surface ozone, its precursor gases, BC along with TOCC, TWVC, AOT1020 nm as well as UV and IR radiation intensities observed during the partial solar eclipse of 15th January, 2010 over Udaipur, where 52% solar disc is obscured due to the moon’s shadow. During the beginning to main eclipse phase, the deviation values of several air pollutants concentrations from eclipse to control day values vary in a small range from −9 to −2 ppb in case of surface ozone and −180 to −80 ppb for CO. The corresponding change in the values of BC observed from −3.3 to −.5 μg/m3. No significant change is found in NO2, NO or in ratio of NO2/NO values during the partial eclipse time. TOCC values decrease from 3 to 5 DU along with a reduction in UV radiation intensity from 20 to 35% from starting to the main eclipse phase. The AOT1020 nm values are found to increase from .2 to 1.0 along with a reduction in IR radiation intensity order of 50%. However, TWVC values decrease from .22 to .1 cm during the eclipse hours. The low level of dilution in surface ozone in eclipse period may be attributed with change in local atmospheric boundary layer dynamic conditions or limited air pollutants dispersion, in term of decreases in planetary boundary layer height, wind speed and hence ventilation coefficient in the same eclipse hours. Thus, present studies support the argument for the leading roles of photochemical reactions with its precursor gases under presence of solar radiation in surface ozone variability. Other possible controlling factors are advection of air pollutants from the polluted region as evident from backward wind trajectories and altering the local meteorological conditions.  相似文献   

8.
We analyze the three outbursts of the X-ray millisecond pulsar SAX J1808.4-3658 that occurred in 1998, 2000, and 2002 observed with RXTE. With a technique based on epoch folding search we find an unique orbital solution valid over the five years of high temporal resolution data available. We revise the estimate of the orbital period, Porb = 7249.1569(1) s and of its error, which we decrease by one order of magnitude. We also give the first constraint on the orbital period derivative, . We find that in 2002 the pulse profile shape is clearly asymmetric, showing a secondary peak at about 145° from the main pulse, which is different from the sinusoidal shape reported at the beginning of the 1998 outburst.  相似文献   

9.
A 40.6 cm Newtonian telescope has been interfaced to the Fabry-Perot interferometer at the Arecibo Observatory to make high spectral resolution measurements of Comet Halley emissions at 6562.72 Å (H-alpha) and 6300.3 Å (OI). In March 1986 the H-alpha surface brightness for a 5′.9 field of view centered on the comet nucleus decreased from 39±7.8 rayleighs on 12 March to 16±3.8 rayleighs on 23 March. The atomic hydrogen production rate on 12 March 1986 was 1.62±0.5 × 1030 s−1, and on 23 March 1986 it was 6.76±2.3 × 1029 s−1. Using spectral resolution of 0.196 Å, we found the atomic hydrogen outflow velocity to be approximately 7.9±1.0 km s−1. In general, the H-alpha spectra are highly structured, and indicative of a multiple component atomic hydrogen velocity distribution. An isotropic outflow of atomic hydrogen at various velocities is not adequate to explain the spectra measured at H-alpha. The 6300.3 Å emission of O(1D) had a surface brightness of 81±16 rayleighs on 15 March 1986, and 95±11 rayleighs on 17 March 1986. After adjustment for atmospheric extinction, the implied O(1D) production rate on 15 March is 6.44±3.0 × 1028 s−1, and the production rate on 17 March is 5.66±2.7 × 1028 s−1. These spectra included a feature at 6300.8 Å that we attribute to NH2. The brightness of this emission feature was 37±11 rayleighs on 15 March.  相似文献   

10.
The problem of surface tension-driven flows in horizontal liquid layers has been studied experimentally, and theoretically by direct numerical simulation and small perturbation analysis. We focus our attention on situations in which the depth of the fluid (liquid tin; small Prandtl number, Pr=0.015) is small enough to ensure the predominance of the surface tension forces over those due to the buoyancy. The surface velocity has been experimentally obtained for liquid tin layer with various aspect ratio (length to height) in the range 5<A<83. The thermal gradients are ranged from 5 to 40°K/cm. In the numerical study, the Navier-Stokes and energy equations are solved by an efficient finite difference technique. The parameters governing the flow behaviour in the liquid are varied to determine their effects on thermocapillary convection: the Reynolds number 10<Re<2104 and the aspect ratio 2<A<25; with Pr kept constant at Pr=0.015. The linear eigenequation resulting from small spatial disturbances of the Couette flow solution is solved using an Tau-Chebyshev approximation. A notable feature of the theoretical study is the totally different end circulations. In the region near the cold wall a multicell structure is evident. This agrees with the eigensolution which is of complex type, indicating spatial periodicity. In the hot wall region the flow is accelerated to reach the velocity value for the fully-developed Couette flow which is reached under conditions such as Re/A<20. The transition from viscous to boundary layer regime occurs for a critical value (Re/A)c of nearly about 200, as deduced from the numerical and experimental results.  相似文献   

11.
We investigate the nature of the faint X-ray source population through X-ray spectroscopy and variability analyses of 136 active galactic nuclei (AGN) detected in the 2 Ms Chandra Deep Field-North Survey with >200 background-subtracted 0.5–8.0 keV counts [F0.5–8.0 keV = (1.4−200) × 10−15 erg cm−2 s−1]. Our preliminary spectral analyses yield median spectral parameters of Γ = 1.61 and intrinsic NH = 6.2 × 1021 cm−2 (z = 1 assumed when no redshift available) when the AGN spectra are fitted with a simple absorbed power-law model. However, considerable spectral complexity is apparent (e.g., reflection, partial covering) and must be taken into account to model the data accurately. Moreover, the choice of spectral model (i.e., free vs. fixed photon index) has a pronounced effect on the derived JVH distribution and, to a lesser extent, the X-ray luminosity distribution. We also find that among the 136 AGN, 10 (≈7%) show significant Fe K emission-line features with equivalent widths in the range 0.1–1.3 keV. Two of these emission-line AGN could potentially be Compton thick (i.e., Γ < 1.0 and large Fe K equivalent width). Finally, we find that 81 (≈60%) of the 136 AGN show signs of variability, and that this fraction increases significantly (≈80–90%) when better photon statistics are available.  相似文献   

12.
Land surface temperature (LST) is an important factor in global change studies, heat balance and as control for climate change. A comparative study of LST over parts of the Singhbhum Shear Zone in India was undertaken using various emissivity and temperature retrieval algorithms applied on visible and near infrared (VNIR), and thermal infrared (TIR) bands of high resolution Landsat-7 ETM+ imagery. LST results obtained from satellite data of October 26, 2001 and November 2, 2001 through various algorithms were validated with ground measurements collected during satellite overpass. In addition, LST products of MODIS and ASTER were compared with Landsat-7 ETM+ and ground truth data to explore the possibility of using multi-sensor approach in LST monitoring. An image-based dark object subtraction (DOS3) algorithm, which is yet to be tested for LST retrieval, was applied on VNIR bands to obtain atmospheric corrected surface reflectance images. Normalized difference vegetation index (NDVI) was estimated from VNIR reflectance image. Various surface emissivity retrieval algorithms based on NDVI and vegetation proportion were applied to ascertain emissivities of the various land cover categories in the study area in the spectral range of 10.4–12.5 μm. A minimum emissivity value of about 0.95 was observed over the reflective rock body with a maximum of about 0.99 over dense forest. A strong correlation was established between Landsat ETM+ reflectance band 3 and emissivity. Single channel based algorithms were adopted for surface radiance and brightness temperature. Finally, emissivity correction was applied on ‘brightness temperature’ to obtain LST. Estimated LST values obtained from various algorithms were compared with field ground measurements for different land cover categories. LST values obtained after using Valor’s emissivity and single channel equations were best correlated with ground truth temperature. Minimum LST is observed over dense forest as about 26 °C and maximum LST is observed over rock body of about 38 °C. The estimated LST showed that rock bodies, bare soils and built-up areas exhibit higher surface temperatures, while water bodies, agricultural croplands and dense vegetations have lower surface temperatures during the daytime. The accuracy of the estimated LST was within ±2 °C. LST comparison of ASTER and MODIS with Landsat has a maximum difference of 2 °C. Strong correlation was found between LST and spectral radiance of band 6 of Landsat-7 ETM+. Result corroborates the fact that surface temperatures over land use/land cover types are greatly influenced by the amount of vegetation present.  相似文献   

13.
We investigate the dark matter distributions in the central region of two clusters of galaxies (A1835 and MKW3S) using Chandra data. N-body simulations in the standard cold dark matter (CDM) model predict the dark matter distribution shows a cuspy dark matter profile: ρ(r) ∝ r, with in the range 1–2, while observations of dwarf and low surface brightness galaxies seem to favor the presence of a relatively flat core: 0 <  < 1. To investigate the dark matter distributions in the central region of clusters of galaxies, we analyze the Chandra data of A1835 and MKW3S with a deprojection method. We derive the mass profiles without the assumption of analytical models. We examine the inner slope of derived mass profiles assuming the dark matter profile is described with a power-law expression. The values of the slope are 0.95 ± 0.10 for A1835 and 1.33 ± 0.12 for MKW3S within the radius of 200 kpc. These are consistent with the result of the CDM simulations. However, within the radius of 100 kpc, the value of is less than unity for A1835 (0.47 ± 0.31). Our result implies that the central dark matter profile of some clusters cannot be described by CDM halos.  相似文献   

14.
Millisecond X-ray time variability studies of accreting low-magnetic-field neutron stars and stellar-mass black holes in X-ray binaries probe the motion of matter in regions of strong gravity. In these regions, general relativity (GR) is no longer a small correction to the classical laws of motion, but instead dominates the dynamics: we are studying motion in strongly curved spacetime. Such millisecond X-ray variability studies can therefore provide unique tests of GR in the strong-field regime. The same studies also constrain neutron-star parameters such as stellar mass and radius, and thereby the equation of state (EOS) of ultradense matter. I briefly review the status, and discuss the prospects for mapping out space-time near accreting stellar-mass compact objects, and measuring the EOS of dense matter, through millisecond timing, particularly with an eye towards future missions. The overwhelming consideration for timing sensitivity is collecting area: contrary to most applications, the signal-to-noise ratio for the aperiodic timing phenomena produced by accretion flows increases proportionally with count rate rather than as the square root of it. A 10 times larger instrument turns 1σ effects into 10σ effects (or does as well in 1% of the time). With the Rossi X-ray Timing Explorer (RXTE), using 0.6 m2 collecting area, we have found several timing diagnostics from the accretion flow in the strong field region around neutron stars and black holes, as well as signals from neutron star surface hot spots. Combined work between RXTE and the new sensitive X-ray spectrographs onboard Chandra and XMM can already begin to clinch the geometry and physical mechanisms underlying these signals. Future instruments, larger in area by an order of magnitude and in some cases with enhanced spectral capabilities, are expected to turn these diagnostics of GR into true tests of GR. They are also expected to put strong constraints on neutron-star structure, and thereby on the EOS of supranuclear density matter.  相似文献   

15.
Among the multiple questions that the CASSINI/HUYGENS mission tries to answer is the likelihood of electric discharges in Titan's atmosphere. The instruments “Huygens Atmospheric Structure Instrument” and “Radio and Plasma Wave Science” will probe the electromagnetic emissions during the Huygens descent and Cassini flybys, respectively. Although no lightning was observed during Voyager's encounters with Titan in 1980 and 1981, this does not exclude the existence of lightning phenomena. Recent investigations show that lightning discharges could occur in the lower atmosphere, such as the detection of methane condensation clouds in the troposphere and the theoretical prediction of an electric field that would be sufficient enough to cause lightning. We present a numerical model of Titan's atmosphere with the aim of calculating the resonance frequencies and the atmospheric transparency to electromagnetic waves. The detection and measurement of these resonances, Schumann frequencies, by the Huygens probe, would show the existence of electric activity connected with lightning discharges in the atmosphere. As it happens with the Schumann frequencies of Earth, losses associated with the electric conductivity will make these frequencies to be lower than the theoretically predicted, the fundamental one being located between 11 and 15 Hz. An analytical study shows that the strong losses associated with the high conductivity make it impossible that an electromagnetic wave generated near the surface with a frequency of 10 MHz or lower reaches the outer part of Titan's atmosphere. Therefore the detection of electromagnetic waves coming from Titan's lower atmosphere by the RPWS instrument is very unlikely.  相似文献   

16.
The X-ray spectra of broad line active galactic nuclei of all types (Seyfert I's, NELG's, Broadline radio galaxies) is well fit by a power law in the .5–100 keV band of mean energy slope α = .68±.15. There is, as yet, no strong evidence for time variability of this slope in a given object. The constraints that this places on simple models of the central energy source are discussed. BL Lac objects have quite different X-ray spectral properties and show pronounced X-ray spectral variability.On time scales longer than 12 hours most radio quiet AGN do not show strong, ΔI/I > .5, variability. The probability of variability of these AGN seems to be inversely related to their luminosity. However characteristic timescales for variability have not been measured for many objects. This general lack of variability may imply that most AGN are well below the Eddington limit. Radio bright AGN tend to be more variable on long, τ 6 month, timescales.  相似文献   

17.
Satellite altimetry provides continuous and spatially regular measurements of the height of the sea surface. Sea level responds to density changes of the water, to mass changes, due to addition or reduction of water mass, and to changes in the atmosphere above it. The present study examines the influence of atmospheric effects on sea-level variability in the North-East Atlantic. The association between the height of the sea surface and the North Atlantic Oscillation (NAO) is investigated by considering different sets of altimetry measurements for which the atmospheric effects have been handled differently. Altimetry data not corrected for atmospheric effects are strongly anti-correlated with the state of the NAO, reflecting the hydrostatic response of sea-level to the NAO pressure dipole. The application of an atmospheric correction to satellite altimetry observations in the NE Atlantic decreases variability of the height time series by more than 70% and reduces the amplitude of the seasonal cycle by ∼5 cm. Altimetry data for which atmospheric effects are removed via an inverse barometer correction show a non-negligible correlation with the NAO index at some locations suggesting further indirect non-hydrostatic influences of the state of the NAO on sea level variability.  相似文献   

18.
Aerosol optical depth (AOD) is one of the most important indicators of atmospheric pollution. It can be retrieved from satellite imagery using several established methods, such as the dark dense vegetation method and the deep blue algorithm. All of these methods require estimation of surface reflectance prior to retrieval, and are applicable to a certain pre-designated type of surface cover. Such limitations can be overcome by using a synergetic method of retrieval proposed in this study. This innovative method is based on the fact that the ratio K of surface reflectance at different angles/geometries is independent of wavelength as reported by Flowerdew and Haigh (1995). An atmospheric radiative transfer model was then established and resolved with the assistance of the ratio K obtained from two Moderate Resolution Imaging Spectroradiometer (MODIS) spectral bands acquired from the twin satellites of Terra and Aqua whose overpass is separated by three hours. This synergetic method of retrieval was tested with 20 pairs of MODIS images. The retrieved AOD was validated against the ground observed AOD at the Taihu station of the AErosol RObotic NETwork (AERONET). It is found that they are correlated with the observations at a coefficient of 0.828 at 0.47 μm and 0.921 at 0.66 μm wavelengths. The retrieved AOD has a mean relative error of 25.47% at 0.47 μm and 24.3% at 0.66 μm. Of the 20 samples, 15 and 17 fall within two standard error of the line based observed AOD data on the ground at the 0.47 μm and 0.66 μm, respectively. These results indicate that this synergetic method can be used to reliably retrieve AOD from the twin satellites MODIS images, namely Terra and Aqua. It is not necessary to determine surface reflectance first.  相似文献   

19.
Daily Be-7 concentrations in air at the height of 15 m are continuously observed at 38°15.2′N, 140°20.9′E, between 2000 and 2001. The average concentration and the relative standard deviation were 4.0 mBq/m3 and 50% in 2000–2001, respectively. The Be-7 concentrations increased 2.5% with the decrease in the sunspot numbers by 6.7% for the term of two years. From the power spectral analysis, the periodicity of 26 days is shown for the daily Be-7 concentrations. The folding analysis indicates that the time variation of the Be-7 concentration is similar to that of the ground-based neutron counting rate, and the phase delay for the minimum portion of Be-7 concentration was roughly 8 days to the maximum sunspot number. These results indicate that the Be-7 concentrations in the air at ground level have 26 day periodicity as a component of time variations and the time variation is caused by the solar modulation of galactic cosmic rays, which corresponds to the variation of the sunspot number due to the rotation of the sun.  相似文献   

20.
Dust detection using remotely sensed measurements has been one of the challenging problems encountered by atmospheric scientists. MODerate Resolution Imaging Spectroradiometer (MODIS) on the Terra (T) and Aqua (A) platforms have been a versatile sensor for well over 21 and 18 years respectively, and have been extremely useful in the retrieval of aerosol information over the entire globe. The MODIS radiances from the Level 1B in general are expected to be within 5% accuracy in the reflective wavelengths and within 1% in the thermal emissive wavelengths. In this paper, we evaluate the sensitivity of previously developed dust detection technique based on thermal emissive wavelengths, which correspond to MODIS bands 20, 29, 31, and 32 respectively. The Thermal Emissive Dust Index (TEDI) performed very comparably to the traditional Aerosol Optical Thickness (AOT) retrievals by MODIS reflective channels. Since the MODIS Thermal Emissive Bands (TEB) are well calibrated on-orbit using a BlackBody (BB) source, the calibration of these long wave infrared bands is quite robust. As A-MODIS continues to perform well beyond its designed lifetime of 6 years, the instrument has undergone various levels of degradation during its mission time. As a consequence, it is imperative to check the impacts of calibration on the higher-level retrievals. In this paper, we rigorously analyze the sensitivity of TEDI due to the impact of calibration by the afore-mentioned TEB. The perturbation of the dominant (linear) calibration term demonstrated the following: first, there was a correlation in the sensitivity of the TEDI due to the uncertainty in the linear calibration term. Based on a perturbation in the linear calibration term for all aforementioned bands over a range of ±5% yielded the TEDI sensitivity to vary from approximately ?3.2% to about ?3.6%. When considering the uncertainty in each individual band significant changes were observed. The least change was observed for the perturbation in the calibration of band 20 with the TEDI sensitivity and the largest sensitivity in TEDI was observed in the perturbation of band 31 calibration. Thus, in the case of TEDI, noticeable sensitivity due to calibration uncertainty was observed in bands 29, 31, and 32, reiterating the importance of the TEB calibration in these bands. Also, the dust detection scheme based on A-MODIS was successfully transferred to the follow-on sensors such as Suomi (SNPP) and NOAA 20 (N20) VIIRS. The results presented in this paper would be extremely helpful in understanding impacts of calibration on the higher-level products for both current and future missions based on the MODIS heritage. Finally, the work also identifies the importance of radiometric fidelity in maintaining the accuracy of the dust detection. Results presented will show drastic improvement of the Saharan dust detection after the reduction of the electronic crosstalk in the 8.5 µm channel of T-MODIS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号