首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The dynamics of the current sheet is one of the most essential elements in magnetotail physics. Particularly, thin current sheets, which we define here as those with a thickness of less than several ion inertia lengths, are known to play an important role in the energy conversion process in the magnetotail. With its capability of multi-point observation, Cluster succeeded to obtain the current density continuously and therefore identify structures of thin current sheets. We discuss characteristics of the thin current sheets by showing their temporal evolution and the spatial structures based on several Cluster observations.  相似文献   

2.
3.
Consequences of the solar wind input observed as large scale magnetotail dynamics during substorms are reviewed, highlighting results from statistical studies as well as global magnetosphere/ionosphere observations. Among the different solar wind input parameters, the most essential one to initiate reconnection relatively close to the Earth is a southward IMF or a solar wind dawn-to-dusk electric field. Larger substorms are associated with such reconnection events closer to the Earth and the magnetotail can accumulate larger amounts of energy before its onset. Yet, how and to what extent the magnetotail configuration before substorm onset differs for different solar wind driver is still to be understood. A strong solar wind dawn-to-dusk electric field is, however, only a necessary condition for a strong substorm, but not a sufficient one. That is, there are intervals when the solar wind input is processed in the magnetotail without the usual substorm cycle, suggesting different modes of flux transport. Furthermore, recent global observations suggest that the magnetotail response during the substorm expansion phase can be also controlled by plasma sheet density, which is coupled to the solar wind on larger time-scales than the substorm cycle. To explain the substorm dynamics it is therefore important to understand the different modes of energy, momentum, and mass transport within the magnetosphere as a consequence of different types of solar wind-magnetosphere interaction with different time-scales that control the overall magnetotail configuration, in addition to the internal current sheet instabilities leading to large scale tail current sheet dissipation.  相似文献   

4.
We discuss quasi-static and dynamic models of the magnetotail response to perturbations imposed by the solar wind, focusing particularly on the formation of thin current sheets, their structure and breakup.  相似文献   

5.
The interaction of planets with the solar wind produces a diversity of current systems, yet these can be classified into only a few different types, which include ionospheric currents, currents carried by magnetospheric boundaries like the magnetopause or ionopause, magnetotail currents, and currents flowing inside the magnetospheres, like ring currents, plasma sheet currents and currents aligned to the magnetic field lines (or field-aligned currents).  相似文献   

6.
The large-scale kinetic technique has been used in the last decade to address many of the intriguing features of the magnetotail revealed by spacecraft observations of the region. In this paper, we present a brief overview of the results achieved by using this technique and present our most recent effort, a time-dependent, self-consistent model of the magnetotail in which the ion current is used to update the ambient magnetic field. This model indicates that the magnetotail exhibits intrinsic variability in the absence of external stimuli and reproduces many of the observed features of the magnetotail, including periodic ion precipitation profiles. Enhancements of this model promise to reveal more of the intricacies of the magnetotail when applied to studying the branching and percolation of the cross-tail current and to the influence of electron and ion behavior on macroscopic processes before and during substorms.  相似文献   

7.
Many physical phenomena in space involve energy dissipation which generally leads to charged particle acceleration, often up to very high energies. In the Earth magnetosphere energy accumulation and release occur in the magnetotail, namely in its Current Sheet (CS). The kinetic analysis of non-adiabatic ion trajectories in the CS region with finite but positive normal component of the magnetic field demonstrated that this region is essentially non-uniform in terms of scattering characteristics of ion orbits and contains spatially localized, well-separated sites of enhanced and reduced chaotization. The latter represent sources from which accelerated and energy-collimated ions are ejected into Plasma Sheet Boundary Layer (PSBL) and stream towards the Earth. Numerical simulations performed as part of a Large-Scale Kinetic Model have shown the multiplet ion structure of the PSBL is formed by a set of ion beams (beamlets) localized both in physical and velocity space. This structure of the PSBL is quite different from the one produced by CS acceleration near a magnetic reconnection region in which more energetic ion beams are generated with a broad range of parallel velocities. Multi-point Cluster observations in the magnetotail PSBL not only showed that non-adiabatic ion acceleration occurs on closed magnetic field lines with at least two CS sources operating simultaneously, but also allowed an estimation of their spatial and temporal characteristics. In this paper we discuss and compare the PSBL manifestations of both mechanisms of CS particle acceleration: one based on the peculiar properties of non-adiabatic ion trajectories which operates on closed magnetic field lines and the other representing the well-explored mechanism of particle acceleration during the course of magnetic reconnection. We show that these two mechanisms supplement each other and the first operates mostly during quiescent magnetotail periods.  相似文献   

8.
Nishida  A. 《Space Science Reviews》2000,91(3-4):507-577
Geomagnetic field lines that are stretched on the nightside of the Earth due to reconnection with the interplanetary magnetic field constitute the Earth's magnetotail. The magnetotail is a dynamic entity where energy imparted from the solar wind is stored and then released to generate disturbance phenomena such as substorms. This paper gives an updated overview on the physics of the magnetotail by drawing heavily from recent research conducted with the GEOTAIL satellite. It summarizes firstly the basic properties of the magnetotail such as shape, size and magnetic flux content, internal motion and plasma regimes. Then it describes characteristics of tail plasmas of the solar-wind and the ionosphere origins. Thirdly it addresses acceleration and heating of plasmas in the magnetotail, where reconnection between the stretched field lines is the main driver but the site of the acceleration is not limited to the immediate vicinity of the neutral line. In the collisionless regime of the plasma sheet kinetic behaviors of ions and electrons control the acceleration process. The paper closes by enumerating the problems posed for future studies.  相似文献   

9.
The THEMIS Mission   总被引:1,自引:0,他引:1  
The Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission is the fifth NASA Medium-class Explorer (MIDEX), launched on February 17, 2007 to determine the trigger and large-scale evolution of substorms. The mission employs five identical micro-satellites (hereafter termed “probes”) which line up along the Earth’s magnetotail to track the motion of particles, plasma and waves from one point to another and for the first time resolve space–time ambiguities in key regions of the magnetosphere on a global scale. The probes are equipped with comprehensive in-situ particles and fields instruments that measure the thermal and super-thermal ions and electrons, and electromagnetic fields from DC to beyond the electron cyclotron frequency in the regions of interest. The primary goal of THEMIS, which drove the mission design, is to elucidate which magnetotail process is responsible for substorm onset at the region where substorm auroras map (~10 RE): (i) a local disruption of the plasma sheet current (current disruption) or (ii) the interaction of the current sheet with the rapid influx of plasma emanating from reconnection at ~25 RE. However, the probes also traverse the radiation belts and the dayside magnetosphere, allowing THEMIS to address additional baseline objectives, namely: how the radiation belts are energized on time scales of 2–4 hours during the recovery phase of storms, and how the pristine solar wind’s interaction with upstream beams, waves and the bow shock affects Sun–Earth coupling. THEMIS’s open data policy, platform-independent dataset, open-source analysis software, automated plotting and dissemination of data within hours of receipt, dedicated ground-based observatory network and strong links to ancillary space-based and ground-based programs. promote a grass-roots integration of relevant NASA, NSF and international assets in the context of an international Heliophysics Observatory over the next decade. The mission has demonstrated spacecraft and mission design strategies ideal for Constellation-class missions and its science is complementary to Cluster and MMS. THEMIS, the first NASA micro-satellite constellation, is a technological pathfinder for future Sun-Earth Connections missions and a stepping stone towards understanding Space Weather.  相似文献   

10.
The morphology of development of auroral flares (magnetospheric substorms) for both electron and proton auroras is summarized, based on ground-based as well as rocket-borne and satellite-borne data with specific reference to the morphology of solar flares.The growth phase of an auroral flare is produced by the inflow of the solar wind energy into the magnetosphere by the reconnection mechanism between the solar wind field and the geomagnetic field, thus the neutral and plasma sheets in the magnetotail attaining their minimum thickness with a great stretch of the geomagnetic fluxes into the tail.The onset of the expansion phase of an auroral flare is represented by the break-up of electron and proton auroras, which is associated with strong auroral electrojets, a sudden increase in CNA, VLF hiss emissions and characteristic ULF emissions. The auroral break-up is triggered by the relaxation of stretched magnetic fluxes caused by cutting off of the tail fluxes at successively formed X-type neutral lines in the magnetotail.The resultant field-aligned currents flowing between the tailward magnetosphere and the polar ionosphere produce the field-aligned anomalous resistivity owing to the electrostatic ion-cyclotron waves; the electrical potential drop thus increased further accelerates precipitating charged particles with a result of the intensification of both the field-aligned currents and the auroral electrojet. It seems that the rapid building-up of this positive feedback system for precipitating charged particles is responsible for the break-up of an auroral flare.  相似文献   

11.
The Earth’s magnetotail is an extremely complex system which—energized by the solar wind—displays many phenomena, and Alfvén waves are essential to its dynamics. While Alfvén waves were first predicted in the early 1940’s and ample observations were later made with rockets and low-altitude satellites, observational evidence of Alfvén waves in different regions of the extended magnetotail has been sparse until the beginning of the new millennium. Here I provide a phenomenological overview of Alfvén waves in the magnetotail organized by region—plasmasphere, central plasma sheet, plasma sheet boundary layer, tail lobes, and reconnection region—with an emphasis on spacecraft observations reported in the new millennium that have advanced our understanding concerning the roles of Alfvén waves in the dynamics of the magnetotail. A brief discussion of the coupling of magnetotail Alfvén waves and the low-altitude auroral zone is also included.  相似文献   

12.
Several recent results concerning the nature of the Earth's magnetotail are briefly reviewed. These observational findings include: (1) the three-dimensional character of the plasma sheet via a comprehensive survey of proton bulk flows, (2) a region of earthward flowing plasmas at the interfaces of the plasma sheet and magnetotail lobes during magnetic substorm recovery, and (3) the signature of electrostatic acceleration for protons within the jetting plasmas from magnetotail fireballs.Proceedings of the Symposium on Solar Terrestrial Physics held in Innsbruck, May–June 1978.  相似文献   

13.
The downward field-aligned current region plays an active role in magnetosphere-ionosphere coupling processes associated with aurora. A quasi-static electric field structure with a downward parallel electric field forms at altitudes between 800 km and 5000 km, accelerating ionospheric electrons upward, away from the auroral ionosphere. A wealth of related phenomena, including energetic ion conics, electron solitary waves, low-frequency wave activity, and plasma density cavities occur in this region, which also acts as a source region for VLF saucers. Results are presented from sounding rockets and satellites, such as Freja, FAST, Viking, and Cluster, to illustrate the characteristics of the electric fields and related parameters, at altitudes below, within, and above the acceleration region. Special emphasis will be on the high-altitude characteristics and dynamics of quasi-static electric field structures observed by Cluster. These structures, which extend up to altitudes of at least 4–5 Earth radii, appear commonly as monopolar or bipolar electric fields. The former are found to occur at sharp boundaries, such as the polar cap boundary whereas the bipolar fields occur at soft plasma boundaries within the plasma sheet. The temporal evolution of quasi-static electric field structures, as captured by the pearls-on-a-string configuration of the Cluster spacecraft indicates that the formation of the electric field structures and of ionospheric plasma density cavities are closely coupled processes. A related feature of the downward current often seen is a broadening of the current sheet with time, possibly related to the depletion process. Preliminary studies of the coupling of electric fields in the downward current region, show that small-scale structures appear to be decoupled from the ionosphere, similar to what has been found for the upward current region. However, exceptions are also found where small-scale electric fields couple perfectly between the ionosphere and Cluster altitudes. Recent FAST results indicate that the degree of coupling differs between sheet-like and curved structures, and that it is typically partial. The mapping depends on the current-voltage relationship in the downward current region, which is highly non-linear and still unclear, as to its specific form.  相似文献   

14.
We review generation mechanisms of Birkeland currents (field-aligned currents) in the magnetosphere and the ionosphere. Comparing Birkeland currents predicted theoretically with those studied observationally by spacecraft experiments, we present a model for driving mechanism, which is unified by the solar wind-magnetosphere interaction that allows the coexistence of steady viscous interaction and unsteady magnetic reconnection. The model predicts the following: (1) the Region 1 Birkeland currents (which are located at poleward part of the auroral Birkeland-current belt, and constitute quasi-permanently and stably a primary part of the overall system of Birkeland currents) would be fed by vorticity-induced space charges at the core of two-cell magnetospheric convection arisen as a result of viscous interaction between the solar wind and the magnetospheric plasma, (2) the Region 2 Birkeland currents (which are located at equatorward part of the auroral Birkeland-current belt, and exhibit more variable and localized behavior) would orginate from regions of plasma pressure inhomogeneities in the magnetosphere caused by the coupling between two-cell magnetospheric convection and the hot ring current, where the gradient-B current and/or the curvature current (presumably the hot plasma sheet-ring current) are forced to divert to the ionosphere, (3) the Cusp Birkeland currents (which are located poleward of and adjacent to the Region 1 currents and are strongly controlled by the interplanetary magnetic field (IMF)) might be a diversion of the inertia current which is newly and locally produced in the velocity-decelerated region of earthward solar wind where the magnetosphere is eroded by dayside magnetic reconnection, (4) the nightside Birkeland currents which are connected to a part of the westward auroral electrojet in the Harang discontinuity sector might be a diversion of the dusk-to-dawn tail current resulting from localized magnetic reconnection in the magnetotail plasma sheet where plasma density and pressure are reduced.  相似文献   

15.
The magnetotail and substorms   总被引:5,自引:0,他引:5  
The tail plays a very active and important role in substorms. Magnetic flux eroded from the dayside magnetosphere is stored here. As more and more flux is transported to the magnetotail and stored, the boundary of the tail flares more, the field strength in the tail increases, and the currents strengthen and move closer to the Earth. Further, the plasma sheet thins and the magnetic flux crossing the neutral sheet lessens. At the onset of the expansion phase, the stored magnetic flux is returned from the tail and energy is deposited in the magnetosphere and ionosphere. During the expansion phase of isolated substorms, the flaring angle and the lobe field strength decrease, the plasma sheet thickens and more magnetic flux crosses the neutral sheet.In this review, we discuss the experimental evidence for these processes and present a phenomenological or qualitative model of the substorm sequence. In this model, the flux transport is driven by the merging of the magnetospheric and interplanetary magnetic fields. During the growth phase of substorms the merging rate on the dayside magnetosphere exceeds the reconnection rate in the neutral sheet. In order to remove the oversupply of magnetic flux in the tail, a neutral point forms in the near earth portion of the tail. If the new reconnection rate exceeds the dayside merging rate, then an isolated substorm results. However, a situation can occur in which dayside merging and tail reconnection are in equilibrium. The observed polar cap electric field and its correlation with the interplanetary magnetic field is found to be in accord with open magnetospheric models.  相似文献   

16.
17.
Current sheets are essential for energy dissipation in the solar corona, in particular by enabling magnetic reconnection. Unfortunately, sufficiently thin current sheets cannot be resolved observationally and the theory of their formation is an unresolved issue as well. We consider two predictors of coronal current concentrations, both based on geometrical or even topological properties of a force-free coronal magnetic field. First, there are separatrices related to magnetic nulls. Through separatrices the magnetic connectivity changes discontinuously. Coronal magnetic nulls are, however, very rare. Second, inspired by the concept of generalized magnetic reconnection without nulls, quasi-separatrix layers (QSL) were suggested. Through QSL the magnetic connectivity changes continuously, though strongly. The strength of the connectivity change can be quantified by measuring the squashing of the flux tubes which connect the magnetically conjugated photospheres. We verify the QSL and separatrix concepts by comparing the sites of magnetic nulls and enhanced squashing with the location of current concentrations in the corona. Due to the known difficulties of their direct observation, we simulated coronal current sheets by numerically calculating the response of the corona to energy input from the photosphere, heating a simultaneously observed Extreme Ultraviolet Bright Point. We did not find coronal current sheets at separatrices but at several QSL locations. The reason is that, although the geometrical properties of force-free extrapolated magnetic fields can indeed hint at possible current concentrations, a necessary condition for current sheet formation is the local energy input into the corona.  相似文献   

18.
Particle acceleration in solar flares remains an outstanding problem in plasma physics and space science. While the observed particle energies and timescales can perhaps be understood in terms of acceleration at a simple current sheet or turbulence site, the vast number of accelerated particles, and the fraction of flare energy in them, defies any simple explanation. The nature of energy storage and dissipation in the global coronal magnetic field is essential for understanding flare acceleration. Scenarios where the coronal field is stressed by complex photospheric motions lead to the formation of multiple current sheets, rather than the single monolithic current sheet proposed by some. The currents sheets in turn can fragment into multiple, smaller dissipation sites. MHD, kinetic and cellular automata models are used to demonstrate this feature. Particle acceleration in this environment thus involves interaction with many distributed accelerators. A series of examples demonstrate how acceleration works in such an environment. As required, acceleration is fast, and relativistic energies are readily attained. It is also shown that accelerated particles do indeed interact with multiple acceleration sites. Test particle models also demonstrate that a large number of particles can be accelerated, with a significant fraction of the flare energy associated with them. However, in the absence of feedback, and with limited numerical resolution, these results need to be viewed with caution. Particle in cell models can incorporate feedback and in one scenario suggest that acceleration can be limited by the energetic particles reaching the condition for firehose marginal stability. Contemporary issues such as footpoint particle acceleration are also discussed. It is also noted that the idea of a “standard flare model” is ill-conceived when the entire distribution of flare energies is considered.  相似文献   

19.
Mende  S.B.  Frey  H.U.  Immel  T.J.  Gerard  J.-C.  Hubert  B.  Fuselier  S.A. 《Space Science Reviews》2003,109(1-4):211-254
The IMAGE spacecraft carries three FUV photon imagers, the Wideband Imaging Camera (WIC) and two channels, SI-12 and SI-13, of the Spectrographic Imager. These provide simultaneous global images, which can be interpreted in terms of the precipitating particle types (protons and electrons) and their energies. IMAGE FUV is the first space-borne global imager that can provide instantaneous global images of the proton precipitation. At times a bright auroral spot, rich in proton precipitation, is observed on the dayside, several degrees poleward of the auroral zone. The spot was identified as the footprint of the merging region of the cusp that is located on lobe field lines when IMF Bz was northward. This identification was based on compelling statistical evidence showing that the appearance and location of the spot is consistent with the IMF Bz and By directions. The intensity of the spot is well correlated with the solar wind dynamic pressure and it was found that the direct entry of solar wind particles could account for the intensity of the observed spot without the need for any additional acceleration. Another discovery was the observation of dayside sub-auroral proton arcs. These arcs were observed in the midday to afternoon MLT sector. Conjugate satellite observations showed that these arcs were generated by pure proton precipitation. Nightside auroras and their relationship to substorm phases were studied through single case studies and in a superimposed epoch analysis. It was found that generally there is substantial proton precipitation prior to substorms and the proton intensity only doubles at substorm onset while the electron auroral brightness increases on average by a factor of 5 and sometimes by as much as a factor of 10. Substorm onset occurs in the central region of the pre-existing proton precipitation. Assuming that nightside protons are precipitating from a quasi-stable ring current at its outer regions where the field lines are distorted by neutral sheet currents we can associate the onset location with this region of closed but distorted field lines relatively close to the earth. Our results also show that protons are present in the initial poleward substorm expansion however later they are over taken by the electrons. We also find that the intensity of the substorms as quantified by the intensity of the post onset electron precipitation is correlated with the intensity of the proton precipitation prior to the substorms, highlighting the role of the pre-existing near earth plasma in the production of the next substorm.  相似文献   

20.
This paper reports the spatial and temporal development of Bursty Bulk Flows (BBFs) created by the reconnection as well as current disruptions (CDs) in the near-Earth tail using our 3D global EM particle simulation with a southward turning IMF in the context of the substorm onset. Recently, observations show that BBFs are often accompanied by current disruptions for triggering substorms. We haver examined the dynamics of BBFs and CDs in order to understand the timing and triggering mechanism of substorms. As the solar wind with the southward IMF advances over the Earth, the near-Earth tail thins and the sheet current intensifies. Before the peak of the current density becomes maximum, the reconnection takes place, which ejects particles from the reconnection region. Because of the earthward flows the peak of the current density moves toward the Earth. The characteristics of the earthward flows depend on the ions and electrons. Electrons flow back into the inflow region (the center of reconnection region), which provides current closure. Therefore the structure of electron flows near the reconnection region is rather complicated. In contrast, the ion earthward flows are generated far from the reconnection region. These earthward flows pile up near the Earth. The ions mainly drift toward the duskside. The electrons are diverted toward the duskside. Due to the pile-up, dawnward current is generated near the Earth. This dawnward current dissipates rapidly with the sheet current because of the opposite current direction, which coincides with the dipolarization in the near-Earth tail. At this time the wedge current may be created in our simulation model. This simulation study shows the sequence of the substorm dynamics in the near-Earth tail, which is similar to the features obtained by the multisatellite observations. The identification of the timing and mechanism of triggering substorm onset requires further studies in conjunction with observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号