首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 718 毫秒
1.
为了改善航空弧齿锥齿轮的啮合稳定性,提出了齿面低敏感性修形.基于齿面误差和误差敏感性矩阵,建立齿面误差修正模型,用广义逆矩阵的最小二乘法求解超越方程组,获得机床调整参数的修正量;对齿面进行3段抛物线修形,将修形后的齿面作为目标齿面,采用齿面误差修正的方法求得相应的机床调整参数;仿真算例表明:经过低敏感性修形,降低了齿面印痕的误差敏感性、提高了齿轮副的容差范围,但齿根弯曲强度下降了4.28%.因此,通过合理选择齿面修形系数,可降低齿根强度的变化,改善齿轮副啮合稳定性.  相似文献   

2.
为了改善螺旋双曲面齿轮啮合特性,对小轮齿面进行修形设计.用抛物线齿廓的产形齿条展成修形插齿刀齿面,模拟插齿刀和被加工齿轮的啮合运动关系,建立齿轮齿面的数学模型;根据两齿面在啮合过程中连续相切条件,建立了考虑安装误差的轮齿接触分析(TCA)模型;齿轮副的啮合仿真结果表明,刀具齿廓抛物线修形可以获得中凸的抛物线传动误差,调整修形参数可改变传动误差幅值和对称性;轴交角的变化影响齿轮副的重合度、接触椭圆、安装误差敏感性.   相似文献   

3.
为了能够实现对齿面啮合性能的灵活控制,针对弧齿锥齿轮小轮提出一种齿面拓扑修形方法,即借助二阶曲面对齿面偏差拓扑的近似表达,将齿面拓扑修形分解为5个方向:螺旋角修正、压力角修正、齿长曲率修正、齿廓曲率修正及齿面挠率修正,通过改变5个方向的修形系数对小轮齿面拓扑结构进行自由控制。在此基础上,建立齿面偏差与机床加工参数之间的修正数学模型,通过构建敏感性矩阵并采用最小二乘法求解,反求出获得修形齿面的小轮加工参数,以便指导加工。以一对弧齿锥齿轮副为例进行修形啮合分析,仿真结果表明:选取齿长曲率修形系数为0.0001,齿廓曲率修形系数为0.0005,齿面挠率修形系数为0.0003,对齿面进行拓扑修形后传动误差幅值为-25.60″,接触迹线倾斜角度变为54.7°,相比原始结果啮合性能得到改善。滚检接触区与理论仿真结果一致,验证了修形方法的有效性。   相似文献   

4.
基于圆弧刀廓的端面滚切锥齿轮啮合接触分析   总被引:2,自引:2,他引:0  
为改善端面滚切法加工的锥齿轮齿面接触质量,基于奥利康锥齿轮全展成加工方法,对直线刀廓圆弧修形及齿面啮合接触分析进行了研究.首先对圆弧刀廓进行了几何设计,推导出了刀齿切削刃方程.在建立锥齿轮端面滚切加工数学模型的基础上,推导出了被加工齿轮理论齿面方程.研究了刀廓圆弧修形对齿面形状的影响,利用数值方法计算出了齿面修形量.建立了考虑安装误差的齿轮副滚检数学模型,推导出了齿面接触分析简化算法.最后对采用圆弧刀廓加工的一对奥利康锥齿轮进行了啮合分析,结果表明,选取合理的圆弧刀廓半径对齿面修形可以降低边缘接触风险,降低对安装误差的敏感性,改善内对角接触,此外还可以实现对两齿面接触区进行独立修正.   相似文献   

5.
斜齿面齿轮几何传动误差的设计   总被引:6,自引:2,他引:4  
沈云波  方宗德  赵宁  郭辉 《航空动力学报》2008,23(11):2147-2152
主要对沿齿高方向修形的斜齿面齿轮副几何传动误差进行了设计.为了避免边缘接触,提高面齿轮传动的连续性和稳定性,采用了一种沿齿高方向曲线修形的面齿轮副齿面结构,对仅有小轮齿面修形的面齿轮副和大、小轮齿面均修形的面齿轮副的几何传动误差进行了设计比较.结果表明,仅小轮沿齿高方向曲线修形的斜齿面齿轮副传动误差为非对称的抛物线,装配误差影响传动误差幅值;沿齿高方向两轮均修形的面齿轮副,恰当的设计齿条刀具抛物线修形因数a1,as和抛物线顶点的位置参数u0,不论是否对准安装,几何传动误差均为连续的对称抛物线型.   相似文献   

6.
研究了弧线齿面齿轮的数控切齿及其啮合特性.基于假想产形齿轮的概念,同时考虑了刀具法向截面的修形,推导弧线齿面齿轮的齿面方程;以坐标变换为工具,建立其机床加工模型,确定各运动轴的多项式表达式;在此基础上,建立了考虑安装误差的弧线齿面齿轮副接触分析模型.计算结果表明:通过面齿轮的齿面修形,可以降低啮合转换点处的传动误差幅值,并获得较好的传动误差曲线.   相似文献   

7.
为了提高面齿轮副的啮合性能,根据面齿轮的磨削加工过程和配对圆柱齿轮的三维拓扑修形原理,推导了面齿轮副的三维拓扑修形齿面方程,分析了5种修形因数对面齿轮副啮合性能的影响,提出了通过优化修形因数实现面齿轮副啮合性能的预控,通过试验验证了三维拓扑修形理论的正确性.研究结果表明:齿廓修形因数是主要的预控参变量,对接触区域沿齿高方向的宽度有明显影响.齿向修形抛物线因数影响接触区沿齿长方向宽度,两者取值的不同能显著影响接触迹线的倾斜程度和接触区域的形状和面积.通过齿面三维拓扑修形,能有效预控齿面的接触区域和传动误差,降低面齿轮副对安装误差的敏感性.  相似文献   

8.
弧线齿面齿轮应力过程分析   总被引:1,自引:1,他引:0  
为了给弧线齿面齿轮的齿面接触强度和齿根弯曲强度设计提供理论依据,研究了弧线齿面齿轮的齿面接触应力和齿根弯曲应力随载荷和安装误差的变化规律.在齿面接触分析和承载接触分析的基础上应用弹性理论计算了弧线齿面齿轮副的齿面接触应力和应用有限元应力影响矩阵法计算了该齿轮副的齿根弯曲应力.给出了数字计算实例,计算结果表明:齿面接触强度和齿根弯曲强度在重载时的接触强度和弯曲强度由单齿啮合区的强度决定,轴向安装误差和轴夹角安装误差分别会增加齿面接触应力和齿根弯曲应力,轴夹角安装误差和轴间距安装误差对齿面接触应力影响甚小,而轴向安装误差和轴间距安装误差可以降低齿根弯曲应力,与直齿面齿轮相比,弧线齿面齿轮的接触和弯曲应力明显减小.   相似文献   

9.
直齿锥齿轮低安装误差敏感性设计与实验验证   总被引:1,自引:1,他引:0  
未修形直齿锥齿轮啮合时为线接触,为减小两齿面啮合对安装误差敏感性,对主动轮齿面采用鼓形修形,改变刨刀运动轨迹进行齿向抛物线修形、改变瞬时滚比进行齿廓修形,从而实现两齿面点接触啮合.为进一步降低安装误差的敏感性,以齿廓、齿向修形系数为优化变量,减小接触迹线上啮合点的差曲面高斯曲率波动,同时增大参考点的差曲面高斯曲率值,降低安装误差敏感性;为避免齿面接触应力过大,控制参考点的差曲面主曲率,保证瞬时接触椭圆的长度不小于齿宽的1/3.算例分析及加工和滚检实验显示:经过优化设计后的修形齿面安装误差敏感性较低,总轴向错位量和总轴向分离量分别达到法向模数的30%,齿面印痕仍具有较好的稳定性.   相似文献   

10.
直齿面齿轮修形及承载接触分析   总被引:12,自引:8,他引:4  
赵宁  郭辉  方宗德  魏冰阳 《航空动力学报》2008,23(11):2142-2146
提出了直齿面齿轮副齿廓修形的设计方法.通过对齿条刀具的直廓失配修形,获得了类似抛物线型的传动误差.建立了直齿面齿轮副轮齿接触分析(TCA)和承载接触分析(LTCA)的计算模型.啮合性能分析表明:齿廓修形能够使直齿面齿轮接触路径发生倾斜从而增大齿面有效重合度,还能避免边缘接触、改善齿面载荷分布与承载传动误差、提高传动的稳定性.   相似文献   

11.
为改善航空弧齿锥齿轮的承载啮合性能,结合ease-off技术提出一种波动齿面设计方法以降低高重合度弧齿锥齿轮的承载传动误差。鉴于中凹型修形曲线(修形齿面的几何传动误差曲线)可极大地减小高重合度弧齿锥齿轮传动的承载传动误差波动幅值,创建一种与高重合度相适应的波动齿面修形模型;结合ease-off技术建立以降低承载传动误差波动幅值为目标的优化模型;通过优化得到具有良好啮合性能的高重合度弧齿锥齿轮。分析发现:优化后2阶传动误差设计弧齿锥齿轮传动的承载传动误差波动幅值降低了34.152%,而由波动齿面设计方法所得改进修形弧齿锥齿轮的承载传动误差进一步降低了61.492%,有效地改善了高重合度弧齿锥齿轮传动性能,为高性能弧齿锥齿轮齿面设计奠定理论基础。   相似文献   

12.
弧线齿面齿轮齿面接触分析   总被引:6,自引:0,他引:6  
为了提高面齿轮副的强度并解决其磨齿问题,提出了弧线齿面齿轮副的一种新的加工方法,并研究其啮合特性.用有刀倾的刀盘旋转而成的切削面作为假想齿轮的齿面,模拟产形齿轮和被加工齿轮啮合过程.推导弧线齿面齿轮副齿面方程;根据两齿面在啮合过程中连续相切条件.建立了考虑安装误差的轮齿接触分析(TCA)模型;齿轮副计算机啮合仿真结果表...  相似文献   

13.
采用碟形砂轮的面齿轮磨齿方法理论分析   总被引:10,自引:6,他引:4  
为了制造出高精度硬齿面面齿轮和获得抛物线传动误差并提高传动稳定性,提出一种采用碟形砂轮加工面齿轮的磨齿方法.分析了碟形砂轮磨削面齿轮的展成原理和碟形砂轮的运动,根据展成原理推导了碟形砂轮的齿面方程,使用渐开线失配的碟形砂轮和改变砂轮的运动,推导出双向修形面齿轮的齿面方程.建立了双向修形面齿轮和常规渐开线小齿轮啮合的齿面接触分析模型,齿面计算和齿面接触分析实例表明,采用碟形砂轮加工双向修形面齿轮的磨齿方法是可行的,获得了面齿轮抛物线传动误差,避免了边缘接触并提高了传动的稳定性.   相似文献   

14.
成形法加工的弧线齿面齿轮几何接触分析   总被引:4,自引:2,他引:2  
研究了成形法加工的弧线齿面齿轮齿面接触分析及齿面修形.弧线产形齿条是由具有一定刀倾角的刀盘形成,用其推导展成加工的弧线齿圆柱齿轮和成形法加工的弧线齿面齿轮齿面方程,同时通过刀具抛物线齿廓对大轮齿面进行修形;在此基础上,建立了包括考虑安装误差在内的弧线齿面齿轮齿面接触分析(TCA)模型;最后通过算例的啮合性能分析,表明对大轮齿面修形可降低传动误差幅值和获得较好传动误差曲线,且该类传动装置对安装误差敏感性较低.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号