首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
针对炭/酚醛燃气舵体积烧蚀问题,在Fluent平台上利用UDF二次开发进行了二维非定常流热耦合数值研究。对几何建模、材料变热物性模型及边界条件等问题进行了详尽的描述,并选取了合适的计算模型。对不同舵偏角下燃气舵温度分布、材料密度及边界热流密度等参数进行了分析研究。计算结果表明,燃气舵前缘一直是体积烧蚀最严重区域,随着舵偏角的增大,迎风面体积烧蚀越为严重;由于炭/酚醛材料的特殊性,随着工作时间的推进,从边界进入燃气舵内部热流密度逐渐降低,趋于一个稳定值。研究方法及结论可用于炭化烧蚀类复合材料燃气舵热分析研究。  相似文献   

2.
通过非接触式高温变形测量系统,对高硅氧/酚醛防/隔热复合材料在单侧热流载荷作用下的温度和全场高温变形进行了精确测量,并对试样体积烧蚀后的表面微观形貌进行分析。实验结果表明,利用陶瓷板在1 000℃左右对高硅氧/酚醛复合材料试件辐射加热200 s后,通过测量发现距离加热面12.62 mm处热电偶温度峰值为259℃,从而说明高硅氧/酚醛复合材料具有优良的防/隔热性能。通过DIC方法测得试样加热200 s后沿加热方向的最大位移为0.18 mm,且沿着试样加热方向位移呈现出逐渐递减的规律。通过对材料烧蚀后表面形貌微观观测和分析,发现在试样加热面上出现了凹凸不平的烧蚀坑,并出现了一层很薄的高硅氧纤维高温熔融后的硅氧化合物颗粒结晶状物质。  相似文献   

3.
通过求解N-S方程,对某空空导弹燃气舵在不同状况下的三维湍流干扰流场进行数值仿真,得到了燃气舵在不同舵偏角下绕流流场的复杂波系结构,计算了测量舵在无干扰舵和有干扰舵情况下升力和阻力等参量随舵偏角的变化曲线。所得舵间干扰相对误差不超过2%,与实际要求相吻合。结果表明,所采用的流动模型和数值模拟方法对燃气舵的气动性能进行预示是有效的。  相似文献   

4.
炭/炭-酚醛双基体烧蚀防热材料研究   总被引:2,自引:1,他引:2  
分别采用PAN基及粘胶丝基炭布作为增强体,进行了一种新型的炭/炭-酚醛双基体烧蚀防热层板材料的探索研究。结果表明,炭/炭-酚醛双基体材料的密度基本与炭/酚醛材料的密度相当;弯曲强度与炭/酚醛材料及C/C材料相当。弯曲模量稍高于炭/酚醛材料而低于C/C材料。其层剪强度低于炭/酚醛材料和C/C材料。降低了30%-40%。炭/炭-酚醛双基体材料保持了炭/酚醛材料低热导率的特点,热膨胀系数低于炭/酚醛材料,但高于C/C材料,其线烧蚀率比炭/酚醛材料降低20%-40%。与PAN基炭布增强材料相比,粘胶丝基炭布表现出层剪强度高、密度低和模量低的优点。但热膨胀系数大和线烧蚀率较大。  相似文献   

5.
C/C喉衬在烧蚀后其内表面会出现炭沉积层,沉积层的出现阻碍了喉衬材料微观烧蚀形貌的分析.针对该问题,采用烧蚀实验发动机,在发动机工作末期喷注氮气和减小喷管喉径2种实验方法展开研究,明确了炭沉积层形成机理以及提出抑制该沉积层的方法.通过实验研究证明,炭沉积层成型于发动机工作末期,沉积是由于氧化性燃气中的烃烷类分子在一定的...  相似文献   

6.
介绍美国马丁公司用钨钼合金作燃气舵材料的研究工作.纯钨材料燃气舵的比重大;既硬又脆;机械加工性能极差,价格昂贵.纯钼材料燃气舵却不耐烧蚀和热冲刷.而85%钨15%钼的钨钼合金燃气舵能经受3079℃高温燃气流历时40秒钟的机械负载和热负载侵蚀试验.对燃烧时间短的固体火箭发动机,60%钨40%钼的钨钼合金燃气舵已能满足其要求了.舵的前缘半径对舵面烧蚀受损率、升力特性和重量均有影响.对当前舰载垂直发射导弹系统来说,希望采用前缘半径小,重量轻,升力特性好,价格低廉的钨钼合金燃气舵.  相似文献   

7.
C/C喉衬烧蚀性能的实验研究   总被引:5,自引:3,他引:2  
开展不同推进剂和压强对喉衬烧蚀的影响研究,对认识喉衬烧蚀机理和指导设计很有意义.采用小型烧蚀实验发动机,开展了不同压强下无铝双基推进剂和含铝17%的复合推进刺工况下C/C喉衬烧蚀的实验研究,分析了粒子沉积、燃气组分和燃烧室压强等时烧蚀性能的影响.结果表明,随着工作压强的升高,喉衬烧蚀率明显增大,主要机制是热流密度增加和气流剥蚀加剧,粒子沉积减弱;相同压强条件下,含铝复合推进剂工况下C/C喉衬的烧蚀率远小于无铝双基推进剂工况,主要原因是氧化铝沉积严重.对喉村烧蚀起到了一定保护作用.  相似文献   

8.
真实气体效应对高超声速轨道器气动特性的影响   总被引:2,自引:1,他引:2  
基于一个7组元6反应动力学模型,采用NND差分格式求解化学反应Navier-Stokes方程,数值研究高超声速轨道器的绕流特性。重点讨论了轨道器气动特性在真实气体效应作用下对不同来流状态和不同舵偏角的敏感性。研究表明:真实气体效应主要发生在物面附近很薄的激波层内,缩短了激波的脱体距离,使激波层变薄,流动变量的梯度变大;空气的离解和电离导致轨道器的阻力系数比完全气体计算值低,压心位置前移。小攻角下,升力系数和俯仰力矩系数的真实气体计算值高于完全气体计算值,大攻角情形则相反。此外,小攻角时真实气体效应产生小低头力矩,而大攻角时产生小抬头力矩。单就舵面而言,真实气体效应使其阻力系数增大,使其升力系数和俯仰力矩系数在小攻角且非负舵偏角时变小,在大攻角且负舵偏角时变大。特别地,真实气体效应仅在零攻角且零舵偏角时对舵面的压心位置产生较大影响。  相似文献   

9.
为揭示柔性内绝热层材料内有机纤维在烧蚀过程中的形貌变化规律和烧蚀机理,分别采用氧乙炔火焰、1000℃高温铁板和热失重加热等不同加热方式,初步探究了不同烧蚀形式下芳纶纤维或腈纶纤维在结炭层内部的形貌演变特征,发现经氧乙炔火焰烧蚀后芳纶增强体系的结炭层内中芳纶炭化纤维呈现中空烧蚀形貌,而腈纶增强体系的结炭层中几乎无纤维状结...  相似文献   

10.
为了提高炭/酚醛树脂复合材料的烧蚀性能,采用蒙脱土(MMT)对炭/酚醛树脂复合材料进行了政性研究.结果表明,有机化处理可使MMT片层的间距明显增大;处理后的MMT在酚醛树脂中的分散状念与MMT的含量有关.当酚醛树脂中MMT含量较低时,MMT主要以剥离的片层形式分散于酚醛树脂中,当酚醉树脂中MMT含量较高时,插层的MMT结构的含量增大;炭/酚醛树脂复合材料的层间剪切强度随MMT含量的增人而增人,在MMT含量达到8%后,趋于稳定.炭/酚醛树脂复合材料的烧蚀率随MMT含量的增大先降低,在MMT含量约为8%时达到最小值.随后随MMT含量的增大而升高.MMT对炭/酚醛树脂复合材料质量烧蚀率的影响小于线烧蚀率.  相似文献   

11.
为提高石墨的耐烧蚀性能,利用压力浸渗方法将AlSi合金渗入石墨孔隙中获得石墨/AlSi耗散防热复合材料。利用小型烧蚀实验发动机开展了不同推进剂和压强工况下石墨/AlSi耗散防热复合材料喉衬和C/C喉衬的对比烧蚀试验研究,总结了推进剂铝含量、燃烧室压强对相对烧蚀性能影响,并分析石墨/AlSi耗散防热复合材料的抗烧蚀机理。结果表明,石墨/AlSi耗散防热复合材料喉衬线烧蚀率低于相同状态下C/C材料喉衬的线烧蚀率,其中在铝质量含量5%、压强12.5 MPa工况中石墨/AlSi喉衬线烧蚀率降低92%。分析认为石墨/AlSi耗散防热复合材料的抗烧蚀机理主要为:石墨孔隙内的AlSi合金通过熔化和气化相变吸收热量,降低了石墨基体的热负载;AlSi合金的熔化后在表面形成的液态膜阻碍了燃气中氧化性成分向石墨基体中的扩散;合金气化产生的Al、Si蒸气在引射作用下注入边界层,与边界层中氧化组分发生反应,降低其中的氧化组分浓度;AlSi合金氧化后形成的Al_2O_3-SiO_2玻璃态熔融层减弱燃气对喉衬机械剥蚀作用。最终石墨/AlSi耗散防热复合材料喉衬表现出优异的抗烧蚀性能。  相似文献   

12.
针对超音速分离线喷管大摆角状态下化学烧蚀导致的壁面退移,基于动网格技术建立了相应的动态仿真模型,实现了对不同燃烧室条件下喷管化学烧蚀率的预示。初步稳态计算得到喉部烧蚀率为0.048 6 mm/s,高出试验结果5.67%,验证了仿真设置的合理性。以此状态结果为瞬态计算的初场,进行相应的化学烧蚀动态仿真计算。该喷管的矢量角放大系数在0.5 s仿真时间内因壁面退移减小了0.42%,对称面下侧分离线结构附近因燃气流动受阻成为喷管烧蚀最严重的位置,烧蚀率为0.074 5 mm/s。增大燃烧室压强或温度,会导致同周向位置的分离线后侧与前侧壁面烧蚀率比值减小。对于分离线附近型面变化较小处,压强5.5 MPa增加到7.5 MPa,该比值减小了10%,温度3200 K增加到3600 K减小了15%。  相似文献   

13.
预制体中添加碳化钨的C/C复合材料结构与烧蚀性能   总被引:1,自引:0,他引:1  
采用在炭纤维预制体中添加WC粉末和基体炭增密的方法,制备了添加WC粉末的C/C复合材料.采用电弧驻点烧蚀试验,考察了材料烧蚀性能,并用扫描电镜观察了其结构和烧蚀后表面形貌,探讨了其烧蚀机理.结果表明,添加WC粉末的C/C复合材料的高温烧蚀包括:C/C复合材料中炭纤维和炭基体中炭与烧蚀气流中氧化气氛的反应;WC的氧化及熔...  相似文献   

14.
C/C组合喉衬烧蚀试验方法及微观形貌对比   总被引:2,自引:0,他引:2  
发展了一种C/C组合喉衬的烧蚀试验方法,采用该方法对C/C原始材料和经过热化学烧蚀后的C/C材料进行含铝工况试验,对比研究粒子对C/C材料表面微观形貌的侵蚀作用。试验表明,该方法能准确反映材料的实际烧蚀性能,确保对比材料烧蚀性能是在同工况下进行,也适用于各类不同喉衬材料的烧蚀性能对比。研究认为,热化学烧蚀起主导作用,有无粒子侵蚀对C/C材料烧蚀率的影响不大;粒子侵蚀对收敛段区域微观形貌影响最为严重,1号试件纤维单丝最尖锐,3号无锥尖形貌,2号呈圆台形貌,喉部区域无铝工况的纤维单丝比含铝工况尖锐;组合喉衬2号和3号因材料表面粗糙度的不同,造成微观形貌和烧蚀率差异,说明经烧蚀后的C/C材料再次烧蚀,其性能大幅下降,材料表面粗糙度越大,烧蚀率越大。  相似文献   

15.
邓帆  任怀宇  谢峰  李绪国  梁杰 《宇航学报》2013,34(6):741-747
在临近空间区域内飞行的高超声速飞行器对舵面操纵特性提出了严苛的要求,在高空高速条件下主翼对舵效有严重影响。通过风洞试验对带全动舵升力体的高超声速升阻特性进行了研究,发现由于主翼的遮挡效应,负舵偏比同舵偏值的正舵偏对升力体升阻特性影响更明显。数值模拟结果显示在舵偏角从-20°~20°变化过程中,由于主翼与舵面之间气流干扰造成舵面上下压差变化复杂,-12°~2°舵偏产生抬头铰链力矩,其余正负舵偏均产生低头铰链力矩,主翼后缘上表面的分离线随攻角增加逐渐前移,迎风面高压气流通过翼舵之间缝隙向上发展,使得舵上表面再附线后移,翼舵之间均有明显的横向流动。  相似文献   

16.
基于烧蚀发动机的EPDM烧蚀性能试验研究   总被引:1,自引:0,他引:1  
采用有2个流速试验段的烧蚀试验发动机在双基推进剂和含Al 10%复合推进剂燃气环境下对EPDM绝热材料进行烧蚀试验,分析了压强、燃气组分和速度等因素对EPDM绝热材料烧蚀特性和炭化层微观结构的影响规律。研究表明,EPDM绝热材料炭化率和质量烧蚀率随着燃气速度和燃烧室压强的增加而增大;在燃气温度、燃烧室压强和燃气速度接近的条件下,含Al 10%复合推进剂燃气环境下的炭化率是双基推进剂燃气环境下的2倍;EPDM绝热材料炭化层的结构呈现一种致密/疏松的多孔结构,表面存在一层致密层。烧蚀模型中炭化层物理模型可用非均质可渗透多孔介质描述。  相似文献   

17.
高超声速飞行器攻角特性数值研究   总被引:4,自引:2,他引:2  
采用二维耦合隐式欧拉方程对高超声速飞行器内定常无粘流场进行了数值仿真,离散采用二阶迎风格式,分析了攻角变化(-10°~7°)对高超声速飞行器分别处于进气道关闭、发动机通流及发动机点火3种不同工作状态下飞行性能的影响。结果表明,当攻角在-10°~7°之间变化时,飞行器的升力系数和升阻比都是随着攻角的增大而不断增加;而俯仰力矩系数却是随着攻角的变化,先增大后减小;在进气道关闭时,随着攻角的不断增大,飞行器的阻力系数亦不断增加,在其他2种工作状态下,随着攻角的增大,飞行器的阻力系数是先减小,后增加,且变化较缓慢,但阻力系数在3种工况下总的趋势是随着攻角的增大而增大。  相似文献   

18.
本文介绍美国采用冷等静压成型、烧结、渗透粉末冶金等技术,研制钨渗铜燃气舵的过程。这种材料制造的燃气舵在固体火箭发动机喷出的高温、高速燃气流和粒子流中工作时,能使钨骨架结构中所渗透铜熔融,汽化和逸出。钨渗铜合金在相状态变化时,需要吸收大量的热量而产生冷却效应,以及铜所具有良好的导热性,使燃气舵起到冷却降温的效果,从而使舵的烧蚀率保持在最低程度,以满足控制系统的要求。  相似文献   

19.
高硅氧/酚醛复合材料烧蚀环境下的吸热机理   总被引:2,自引:0,他引:2  
通过分析高硅氧/酚醛复合材料烧蚀过程中的吸热机制,结合表面烧蚀理论和边界层空气动力学关系,应用质量引射影响系数的半经验公式,建立了烧蚀环境下吸热机理的理论预报方法,并利用氧乙炔焰动态烧蚀实验对该理论预报方法进行了验证。根据烧蚀过程达到稳态时烧蚀材料表面的能量守恒原理,推导了各吸热机理与总吸热量的比重关系,在给定的烧蚀环境工况下,预报了各吸热机理占总吸热量的比重。结果表明,熔融高硅氧纤维的蒸发吸热对总吸热量的贡献最大,所占比重为44.9%,是主要的吸热机制;材料的热容吸热和烧蚀材料向外界环境的热辐射占总吸热量的比重分别为22.3%和20.1%;树脂热解吸热所占比重很小,仅为1.0%,但热解气体引射进入边界层产生热阻塞效应占总吸热量的比重较大,为11.7%。  相似文献   

20.
采用CVI+PIC工艺制备了密度为1.35~1.45 g/cm3的C/C多孔体,对多孔体进行LSI快速获得C/C-SiC防热材料,表征了防热材料的微观结构、弯曲性能,对其进行300 s氧乙炔烧蚀试验,检测了筒形C/C-SiC燃烧室热结构缩比构件的整体承压性能。结果表明,采用CVI+PIC方法成型的C/C多孔体LSI后,液相Si主要与树脂炭反应,生成的SiC位于纤维束之间的大孔孔隙中,由炭纤维束与其内部和包覆在纤维束表层的热解炭构成的增强相未受液Si浸蚀。制备的C/C-SiC弯曲强度达122 MPa,弯曲破坏呈现明显的假塑性断裂;筒形C/C-SiC燃烧室热结构缩比件(外径175 mm、壁厚7.5 mm、高度200 mm)水压爆破压力为5.2 MPa。C/C-SiC材料氧乙炔试验线烧蚀率0.000 2~0.000 3 mm/s、质量烧蚀率0.000 1~0.000 3 g/s,材料的烧蚀以热化学烧蚀为主,烧蚀型面整体平滑,烧蚀表面形成了SiO2抗氧化玻璃相和Si纳米线。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号