首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 130 毫秒
1.
崔伟峰  曾新吾 《宇航学报》2007,28(1):136-140
提出了双层板防护结构的超高速碰撞数值模拟的工程算法模型,采取理论分析、经验公式和数值模拟相结合的研究方法来模拟碎片云的产生,以及碎片云对结构的破毁过程。本模型中,碎片云的产生采用理论分析和经验公式得到,结构响应采用有限元动力学软件Dyna3D进行计算。数值模拟结果与文献中给出的破坏效果基本一致,说明提出的工程算法是可行的,模拟得到的结果能定性的描述相应的超高速碰撞的现象,得到基本正确的结果。  相似文献   

2.
在中国空气动力研究与发展中心(CARDC)超高速碰撞中心(HIRC)7.6 mm超高速碰撞设备的基础上,搭建纳秒级脉冲激光数字全息系统。提出滤波片和衰减片组合布置,减弱超高速碰撞等离子体自发光、提高信噪比的方法。实验获得了2.25 mm铝球弹丸以4.0 km/s的速度撞击0.5 mm厚铝板形成碎片云的全息图。采用小波变换算法对碎片云全息图进行重建,得到超高速撞击碎片云的三维结构和碎片大小。碎片云的轮廓呈椭球型,分为碎片云的前端、核心和外壳,碎片主要分布在弹丸破碎形成的碎片云核心,存在大碎片,且分布较集中,对后板的损伤也严重  相似文献   

3.
弹丸正撞击Whipple防护结构后墙的撞击载荷分析   总被引:1,自引:0,他引:1  
文章为了分析超高速弹丸对Whipple防护结构后墙的撞击损伤,利用质量守恒、动量守恒及能量守恒等分析了碎片云运动特性,在此基础上构造了碎片云对Whipple防护结构后墙的法向撞击载荷函数,为进一步分析弹丸超高速正撞击Whipple防护结构后其后墙的裂纹长度提供了有效的分析工具。  相似文献   

4.
文章基于空间碎片被动防护需求,提出了一种梯度波纹夹层防护结构,并对其超高速碰撞过程及形成碎片云的特性进行了仿真分析。仿真结果表明,相比于Whipple结构,在梯度波纹夹层结构中冲击波的卸载方式更复杂,更有利于空间碎片的破碎;碰撞速度在5~20 km/s时,碎片云的膨胀半角先增大后减小;夹层结构中前置波纹板对撞击动能中不可逆功的吸收量和吸收占比最大。研究结果对空间碎片被动防护结构的设计具有一定的参考价值。  相似文献   

5.
带隔热层蜂窝夹层结构的超高速撞击特性研究   总被引:2,自引:0,他引:2  
带隔热层的蜂窝夹层结构是航天器常用的结构材料。针对带隔热层蜂窝夹层结构开展了超高速撞击试验研究和数值模拟。通过试验获得了带隔热层蜂窝夹层结构的弹道极限方程,并利用该方程计算了带隔热层前板的等效厚度;同时采用光滑质点流体动力学(SPH)和有限元(FE)耦合的方法,对蜂窝夹层结构的超高速撞击过程进行了数值模拟,模拟结果表明:蜂窝芯限制了碎片云的径向膨胀,碎片云轴向流的导流和分流作用。  相似文献   

6.
超高速撞击弹丸形状效应数值模拟研究   总被引:3,自引:0,他引:3  
马文来  张伟  庞宝君  陈海辉 《宇航学报》2006,27(6):1174-1177,1232
为保证在轨航天器的安全运行,微流星体和空间碎片的防护成为现有航天器,特别是长寿命、大尺寸航天器设计时必须考虑的问题。本文采用AUTODYN软件进行了不同形状弹丸超高速撞击whipple防护结构的数值模拟,对不同形状弹丸撞击Whipple防护结构的撞击极限曲线进行了比较,分析了各形状弹丸撞击防护屏后形成的碎片云状态,以及分析了各撞击极限曲线之间差异的原因。不同形状弹丸对Whiple防护结构的损伤能力有很大差异,弹丸破碎和碎片云分散程度随弹丸速度、长径比和撞击方向的改变而改变。  相似文献   

7.
球形弹丸高速撞击航天器防护结构的数值模拟分析   总被引:5,自引:1,他引:5  
给出了空间碎片超高速撞击航天器双层防护结构模型,采用非线性有限元方法中的光滑粒子流体动力算法,计算了球形弹丸对航天器双层防护墙结构超高速撞击过程,获得了弹丸穿过第一层防护墙后,碎裂形成颗粒云团及其对第二层防护墙的损伤效应。计算结果表明多层防护墙结构能够有效地缓减高速空间碎片对航天器的破坏作用。  相似文献   

8.
CAST空间碎片超高速撞击试验研究进展   总被引:1,自引:1,他引:0  
超高速撞击试验是开展载人航天器及大型应用卫星空间碎片超高速撞击风险评估和防护设计的基础,作为我国航天器环境效应和可靠性工程验证部门的北京卫星环境工程研究所在这个领域做了大量的工作。文章介绍了二级轻气炮超高速撞击地面模拟试验技术、典型防护结构防护性能的超高速撞击试验验证、载人航天器外露材料超高速撞击特性、毫米级弹丸7 km/s以上超高速稳定发射技术探索、高性能防护结构研究等方面的若干近期进展。展望了我国空间碎片防护需求和地面超高速撞击试验研究的发展方向。  相似文献   

9.
低温下Whipple防护结构超高速撞击效应研究   总被引:2,自引:0,他引:2  
文章研究了低温下空间碎片对典型Whipple防护结构的超高速撞击效应。首先在二级轻气炮设备上研制出使用液氮可将撞击靶冷却至-150 ℃且满足低温超高速撞击试验要求的低温装置。利用该装置开展了低温条件下的超高速撞击试验,对低温和室温两种条件下的试验结果进行了比对,并分别对缓冲屏穿孔特性、碎片云特性和后墙损伤特性之间的差异进行了分析。文章最后给出低温下典型Whipple防护结构的弹道极限曲线。  相似文献   

10.
为研究圆柱体弹丸超高速撞击薄板的碎片云特征,基于仿真软件AUTODYN-3D的光滑粒子流体动力学(SPH)方法,模拟圆柱体弹丸不同长径比、不同攻角条件下超高速撞击薄板的过程。设圆柱体弹丸撞击速度为5 km/s,长径比分别为0.5、1.0、2.0、4.0,攻角为15°~75°,数值模拟结果分析表明:圆柱体弹丸超高速斜撞击薄板形成的碎片云中,大部分是小质量碎片;大碎片的质量和动能占比较大,是造成后墙损伤的主要原因。同时,当弹丸长径比为0.5和1.0时,15°攻角下的碎片云侵彻能力最弱;长径比为2.0和4.0时,75°攻角下的碎片云侵彻能力最弱。研究结果可为航天器防护结构设计优化提供参考。  相似文献   

11.
超高速撞击中靶后碎片云的内外边界方程研究   总被引:1,自引:1,他引:1  
研究超高速撞击防护靶形成的碎片云的形状模型对航天器防护结构设计具有重要意义。文章用数值仿真的方法研究靶后碎片云的内外边界模型:将碎片云根据其材料来源分为靶板碎片云和弹丸碎片云,分别根据各碎片云的分布特点建立碎片云形状的内外边界方程;在双纽线边界方程的基础上,修正为由双纽线方程和圆弧方程组成的边界方程。对比整体碎片云的适用率表明,由双纽线方程和圆弧方程组成的边界方程比单一的双纽线边界方程描述碎片云实际分布更为贴合。  相似文献   

12.
低地球轨道航天器易受到微流星体及空间碎片的超高速撞击。相较于正撞击,斜撞击现象更加普遍、更具研究价值。文章采用Autodyn-3D数值模拟软件,利用光滑粒子流体动力学(smooth particle hydrodynamics, SPH)方法,模拟Al2017-T4球形弹丸超高速斜撞击Al2A12薄板的过程,开展弹丸撞击速度为3~6 km/s、撞击角度为0°~60°时的撞击特征仿真分析。结果表明:撞击角度对碎片云形貌与几何尺寸,以及穿孔大小和形状特征有显著影响;当撞击角度为30°~45°时会发生滑弹反溅现象,造成弹丸侵彻能力下降。研究结果可为超高速撞击防护结构的设计和改进提供支持。  相似文献   

13.
文章描述了一个用于航天器防护结构综合优化的独特方法——几何规划优化技术,以减小暴露于流星体和空间碎片超高速碰撞环境下的航天器防护结构系统的重量。空间碎片和流星体环境由广义加权目标函数的公式来定义。通过Wilkinson,Burch和Nysmith超高速碰撞预示模型说明几何规划的性能。表明遵循几何规划形式的超高速碰撞模型,可以进行综合非线性设计优化。  相似文献   

14.
Numerical simulation of space debris impacts on the Whipple shield   总被引:8,自引:0,他引:8  
  相似文献   

15.
超高速撞击中的弹丸形状效应数值模拟研究   总被引:2,自引:0,他引:2  
文章用AUTODYN仿真软件对球形、圆锥形、圆柱形和盘形4种不同形状弹丸超高速撞击Whipple防护结构所产生的碎片云形貌特征及对后墙的毁伤程度进行了数值仿真研究。对比分析结果指出:质量与速度相等的4种不同形状弹丸撞击缓冲屏所产生的碎片云有明显差异;弹丸长径比越小,穿过缓冲屏后的破碎程度越大;在5 km/s撞击速度下,球形弹丸对后墙的毁伤程度最小,而圆柱形弹丸的毁伤程度最大。这说明弹丸的形状对超高速撞击结果有显著影响,在航天器超高速撞击风险评估和防护工程设计中应充分考虑弹丸的形状效应。球形弹丸的弹道极限曲线在防护结构的碎片防护能力评价时存在高估的问题,在实际工作中要特别注意这一点。  相似文献   

16.
日益恶化的空间碎片环境将严重威胁空间站及航天员的在轨安全。文章基于聚偏二氟乙烯(polyvinylidene fluoride,PVDF)压电薄膜设计了一种密封舱壁穿孔损伤识别技术方案,用于识别空间碎片超高速撞击对航天器密封舱壁造成的损伤模式,可为航天员合理选择应急措施提供依据。首先,发射超高速弹丸穿透铝合金靶板以模拟密封舱壁被击穿损伤的情况,形成的碎片云撞击PVDF压电薄膜探头,利用信号采集设备获取高速撞击引起的去极化效应信号,识别该信号的频率特征;其次,对PVDF压电薄膜探头及其支撑结构进行敲击试验,模拟在轨运行时因碰撞产生的干扰信号,掌握此类干扰信号的频率特征。试验结果表明,当系统采样频率为20 MHz时:1)所获得的探头去极化效应信号具有极为陡峭的上升沿,且上升沿的时长为亚μs量级;2)去极化效应信号主要由1 MHz以下的信号组成,但也包含少量的3~10 MHz高频成分;3)敲击探头及其支撑结构所产生的干扰信号频率在20 kHz以下。可根据频率差异进行两种信号的识别。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号