首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The features of the excitation of spatially localized long-period (10–15 min) irregular pulsations with a maximum amplitude of ~200 nT at a geomagnetic latitude of 66° in the morning sector 5 MLT are considered. Fluctuations were recorded against the background of substorm disturbances (maximum AE ~ 1278 nT). Antiphase variations of plasma density and magnetic field accompanied by vortex disturbances of the magnetic field both in the magnetosphere and the ionosphere have been recorded in the magnetosphere in this sector. Compression fluctuations corresponding to a slow magnetosonic wave have been recorded in the interplanetary medium in the analyzed period. It is assumed that pulsations have been excited in the localization of the cloud of injected particles in the plasma sheet by compression fluctuations caused by variations of the dynamic pressure of solar wind.  相似文献   

2.
On the basis of data of two networks of Canadian stations and also of extra- and intra-magnetospheric satellites, daytime long-period geomagnetic pulsations related to sudden impulses of the dynamic pressure of the solar wind (SW) are studied. The influence of SW parameters, interplanetary magnetic field (IMF), and geomagnetic activity on the propagation direction, polarization, and amplitude of pulsations is discussed. It is shown that at arrival front of the solar wind inhomogeneity at the place of its tangency, surface oscillations within the range of Pc5 geomagnetic pulsations are excited on the magnetopause, and they run away from the tangency point to the nighttime side with increasing amplitude and opposite polarization. The pulsation properties and the position of the running-away point are explained by the mechanism of their excitation on the magnetopause by the inclined front of the inhomogeneity and also by the Kelvin-Helmholtz instability. Increases in SW density observed ahead of the shock front were able to cause pulsation excitation onsets prior to the sudden storms commencement (SSC) front arrival. The observed increase in geomagnetic activity after SSC could change the direction of pulsation propagation from anti-sunward to sunward. The analysis of oscillation spectra made it possible to assume that pulsations with a frequency of the order of 2.5 mHz are of a global character, they are not related to oscillations in SW and are excited by sharp SSC fronts.  相似文献   

3.
We present the results of a cross-correlation analysis made on the basis of Spearman’s rank correlation method. The quantities to correlate are daily values of the fluence of energetic electrons at a geosynchronous orbit, intensities of ground and interplanetary ultra-low-frequency (ULF) oscillations in the Pc5 range, and parameters of the solar wind. The period under analysis is the 23rd cycle of solar activity, 1996–2006. Daily (from 6 h to 18 h of LT) magnetic data at two diametrically opposite observatories of the Intermagnet network are taken as ground-based measurements. The fluxes of electrons with energies higher than 2 MeV were measured by the geosynchronous GOES satellites. The data of magnetometers and plasma instruments installed on ACE and WIND spacecraft were used for analysis of the solar wind parameters and of the oscillations of the interplanetary magnetic field (IMF). Some results elucidating the role played by interplanetary ULF waves in the processes of generation of magneospheric oscillations and acceleration of energetic electrons are obtained. Among them are (i) high and stable correlation of ground ULF oscillations with waves in the solar wind; (ii) closer link of mean daily amplitudes of both interplanetary and ground oscillations with ‘tomorrow’ values of the solar wind velocity than with current values; and (iii) correlation of the intensity of ULF waves in the solar wind, normalized to the IMF magnitude, with fluxes of relativistic electrons in the magnetosphere.  相似文献   

4.
The large and sharp changes of solar wind dynamic pressure, found from the INTERBALL-1 satellite and WIND spacecraft data, are compared with simultaneous magnetic field disturbances in the magnetosphere measured by geosynchronous GOES-8, GOES-9, and GOES-10 satellites. For this purpose, about 200 events in the solar wind, associated with sharp changes of the dynamic pressure, were selected from the INTERBALL-1 satellite data obtained during 1996–1999. The large and sharp changes of the solar wind dynamic pressure were shown to result in rapid variations of the magnetic field strength in the outer magnetosphere, the increase (drop) of the solar wind dynamic pressure always lead to an increase (drop) of the geosynchronous magnetic field magnitude. The value of the geomagnetic field variation strongly depends on the local time of the observation point, reaching a maximum value near the noon meridian. It is shown that the direction of the B z component of the interplanetary magnetic field has virtually no effect on the geomagnetic field variation because of a sharp jump of pressure. The time shift between an event in the solar wind and its response in the magnetosphere at a geosynchronous orbit essentially depends on the inclination of the front of a solar wind disturbance to the Sun-Earth line.  相似文献   

5.
During the period October 29–31, 2003, geosynchronous magnetopause crossings (GMC) have been identified based on the magnetic data of the GOES series spacecraft and plasma data of the LANL series spacecraft. It is shown that most of the time the size of the dayside magnetosphere was highly decreased under the effect of very high pressure associated with high velocities and densities of the solar wind plasma, as well as high negative values of the Bz component of the interplanetary magnetic field (IMF). For tens of hours the subsolar magnetopause was deep inside the geosynchronous orbit. During the main phase and at the maximum of the strong geomagnetic storms that occurred in the period under consideration, the dayside magnetosphere was characterized by a strong dawn-dusk asymmetry, so that its size in the postnoon sector considerably exceeded the size in the pre-noon sector. The geomagnetic disturbances in the morning on October 30 and 31, 2003 were accompanied by global magnetospheric pulsations with periods of 5–10 min and high amplitude (up to 0.8 RE).Translated from Kosmicheskie Issledovaniya, Vol. 42, No. 6, 2004, pp. 574–584.Original Russian Text Copyright © 2004 by Dmitriev, Suvorova.  相似文献   

6.
We investigate the behavior of mean values of the solar wind’s and interplanetary magnetic field’s (IMF) parameters and their absolute and relative variations during the magnetic storms generated by various types of the solar wind. In this paper, which is a continuation of paper [1], we, on the basis of the OMNI data archive for the period of 1976–2000, have analyzed 798 geomagnetic storms with D st ≤ −50 nT and their interplanetary sources: corotating interaction regions CIR, compression regions Sheath before the interplanetary CMEs; magnetic clouds MC; “Pistons” Ejecta, and an uncertain type of a source. For the analysis the double superposed epoch analysis method was used, in which the instants of the magnetic storm onset and the minimum of the D st index were taken as reference times. It is shown that the set of interplanetary sources of magnetic storms can be sub-divided into two basic groups according to their slowly and fast varying characteristics: (1) ICME (MC and Ejecta) and (2) CIR and Sheath. The mean values, the absolute and relative variations in MC and Ejecta for all parameters appeared to be either mean or lower than the mean value (the mean values of the electric field E y and of the B z component of IMF are higher in absolute value), while in CIR and Sheath they are higher than the mean value. High values of the relative density variation sN/〈N〉 are observed in MC. At the same time, the high values for relative variations of the velocity, B z component, and IMF magnitude are observed in Sheath and CIR. No noticeable distinctions in the relationships between considered parameters for moderate and strong magnetic storms were observed.  相似文献   

7.
The results of studying the interaction of two types of the solar wind (magnetic clouds and solar wind of extremely low density) with the Earth's magnetosphere are discussed. This study is based of the INTERBALL space project measurements and on the other ground-based and space observations. For moderate variations of the solar wind and interplanetary magnetic field (IMF) parameters, the response of the magnetosphere is similar to its response to similar changes in the absence of magnetic clouds and depends on a previous history of IMF variations. Extremely large density variations on the interplanetary shocks, and on leading and trailing edges of the clouds result in a strong deformation of the magnetosphere, in large-scale motion of the geomagnetic tail, and in the development of magnetic substorms and storms. The important consequences of these processes are: (1) the observation of regions of the magnetosphere and its boundaries at great distances from the average location; (2) density and temperature variations in the outer regions of the magnetosphere; (3) multiple crossings of geomagnetic tail boundaries by a satellite; and (4) bursty fluxes of electrons and ions in the magnetotail, auroral region, and the polar cap. Several polar activations and substorms can develop during a single magnetic cloud arrival; a greater number of these events are accompanied, as a rule, by the development of a stronger magnetic storm. A gradual, but very strong, decrease of the solar wind density on May 10–12, 1999, did not cause noticeable change of geomagnetic indices, though it resulted in considerable expansion of the magnetosphere.  相似文献   

8.
Fedorov  A.  Budnik  E. 《Cosmic Research》2000,38(6):540-546
Localization of the reconnection region at the dayside magnetopause is among the unsolved problems of magnetospheric physics. There are two alternative models, one of which predicts the reconnection at the equatorial magnetopause, and the other predicts the reconnection in the region where the magnetic field of the solar wind flowing around the magnetosphere is antiparallel to the geomagnetic field. The statistical analysis carried out for 53 INTERBALL-1crossings of the high-latitude magnetopause in a special coordinate frame invariant with respect to the interplanetary conditions shows that the model of a reconnection in antiparallel fields agrees well with the experimental data.  相似文献   

9.
Within the framework of the Space Weather program, 25-year data sets for solar X-ray observations, measurements of plasma and magnetic field parameters in the solar wind, and D st index variations are analyzed to reveal the factors that have had the greatest influence on the development of magnetospheric storms. The correlation between solar flares and magnetic storms practically does not exceed a level of correlation for random processes. In particular, no relation was found between the importance of solar flares and the minimum of the D st index for storms that could be connected with considered flares by their time delay. The coronal mass ejections (CME; data on these phenomena cover a small part of the interval) result in storms with D st < –60 nT only in half of the cases. The most geoeffective interplanetary phenomena are the magnetic clouds (MC), which many believe to be interplanetary manifestations of CMEs, and compressions in the region of interaction of slow and fast streams in the solar wind (the so-called Corotating Interaction Region, CIR). They correspond to about two-thirds of all observed magnetic storms. For storms with –100 < D st < –60 nT, the frequencies of storms from MC and CIR being approximately equal. For strong storms with D st < – 100 nT, the fraction of storms from MC is considerably higher. The problems of reliable prediction of geomagnetic disturbances from observations of the Sun and conditions in interplanetary space are discussed.  相似文献   

10.
Spatial structure of the magnetosheath of the Earth was studied under the conditions when no sharp (more than 40° during 5 min) changes in the interplanetary magnetic field direction were observed. On the basis of 24 flights of the Interball-1 satellite through the magnetosheath, it is found that three regions differing from each other by parameters of the field and plasma can be observed in the magnetosheath under the above-indicated conditions. These regions also differ from the solar wind region before front of the Earth’s magnetospheric bow shock. Empirical distributions of parameters were studied in each region. Taking into account the influence of the interplanetary magnetic field direction on the processes in the magnetosheath, the cases of quasi-perpendicular and quasi-parallel shock waves were considered separately. The study showed that the distribution of parameters in the selected regions (in the solar wind before front of the bow shock, in the magnetosheath behind the bow shock (post-shock), in the region of the magnetosheath with minimal fluctuations in the field, and in the inner magnetosheath) differ from each other at any interplanetary magnetic field direction.  相似文献   

11.
We investigate the relative occurrence rate for various types of the solar wind and their geoeffectiveness for magnetic storms with Dst < —50 nT. Both integrated effect for the entire time 1976–2000 and variations during this period of 2.5 cycles of solar activity are studied As raw data for the analysis we have used the catalog of large-scale types of the solar wind for the period 1976-2000 (see ftp://ftp.iki.rssi.ru/omni/) created by us with the use of the OMNI database (http://omni.web.gsgc.nasa.gov) [1] and described in detail in [2]. The average annual numbers of different type of events are as follows: 124 ±81 for the heliospheric current sheet (HCS), 8 ±6 for magnetic clouds (MC), 99 ±38 for Ejecta, 46 ±19 for Sheath before Ejecta, 6 ±5 for Sheath before MC, and 63 ±15 for CIR. The measurements that allowed one to determine a source in the solar wind were available only for 58% of moderate and strong magnetic storms (with index Dst < —50 nT) during the period 1976–2000. Magnetic clouds (MC) are shown to be the most geoeffective (~61%). The CIR events and Ejecta with Sheath region are three times less geoeffective (~20–21 %). Variations of occurrence rate and geoeffectiveness of various types of the solar wind in the solar cycle are discussed.  相似文献   

12.
Results of the analysis of specific features of solar activity, dynamics of solar cosmic ray fluxes, and state of the interplanetary medium are presented for the period December 5–18, 2006. The data analysis is based on new model concepts on coronal and interplanetary propagation of solar cosmic rays: partial capture into the magnetic field traps and oscillations at reflections from magnetic mirrors. Some new hypotheses about possible relations of the features of the interplanetary medium with processes in the Earth’s magnetosphere are put forward: the influence of the discrete interplanetary medium on processes in the Earth’s magnetosphere does exist always and, in this sense, it is a fundamental phenomenon; the discreteness of the inter-planetary medium can be one of the causes of geomagnetic substorms.  相似文献   

13.
The results of a detailed study of large (by 20% and more) and sharp (faster than ten minutes) changes of the ion flux in the solar wind are presented. The data are provided by regular measurements onboard the INTERBALL-1 satellite in the period 1996–1999. Using statistical analysis, we obtained the distribution of these changes in their absolute and relative strength. It is shown that, for a considerable proportion of the events, such sharp and large changes of the ion flux (density) take place under conditions of fairly constant values of the solar wind velocity and of both the magnitude and components of the interplanetary magnetic field.  相似文献   

14.
In this paper we continue the analysis of the influence of solar and interplanetary events on magnetic storms of the Earth that was started in [9, 10]. Different experimental results on solar-terrestrial physics are analyzed in the study and the effects are determined that arise due to differences in the methods used to analyze the data. The classifications of magnetic storms by the K p and D st indices, the solar flare classifications by optical and X-ray observations, and the classifications of different geoeffective interplanetary events are compared and discussed. It is demonstrated that quantitative estimations of the relationships between two types of events often depend on the direction in which the events are compared. In particular, it was demonstrated that the geoeffectiveness of halo CMEs (that is, the percentage of Earth-directed coronal mass ejections that result in geomagnetic storms) is 40–50%. Higher values given in some papers were obtained by another method, in which they were defined as the probability of finding candidates for a source of geomagnetic storms among CMEs, and, strictly speaking, these values are not true estimates of the geoeffectiveness. The latter results are also in contrast with the results of the two-stage tracing of the events: first a storm—an interplanetary disturbance, and then an interplanetary disturbance—a CME.  相似文献   

15.
Modulation of the VLF emission and riometric absorption by Pc5 geomagnetic pulsations is studied in the period of strong geomagnetic disturbances on October 30–31, 2003. Some conclusions about the regime of pitch-angular diffusion into the loss cone are made. The better coincidence of VLF emission modulation with geomagnetic pulsations in other longitude sectors is explained by the global character of excitation of the pulsations and by damping of their amplitudes at the meridian of observation of the VLF emission, which is associated with intensification of auroral electrojets.Translated from Kosmicheskie Issledovaniya, Vol. 42, No. 6, 2004, pp. 632–639.Original Russian Text Copyright © 2004 by Solovyev, Mullayarov, Baishev, Barkova, Samsonov.  相似文献   

16.
The magnetosphere and ionosphere response to arrival of large changes of the solar wind dynamic pressure with sharp fronts to the Earth is considered. It is shown that, under an effect of an impulse of solar wind pressure, the magnetic field at a geosynchronous orbit changes: it grows with increasing solar wind pressure and decreases, when the solar wind pressure drops. Energetic particle fluxes also change: on the dayside of the magnetosphere the fluxes grow with arrival of an impulse of solar wind dynamic pressure, and on the nightside the response of energetic particle fluxes depends on the interplanetary magnetic field (IMF) direction. Under the condition of negative Bz-component of the IMF on the nightside of the magnetosphere, injections of energetic electron fluxes can be observed. It is shown, that large and fast increase of solar wind pressure, accompanied by a weakly negative Bz-component of the IMF, can result in particless’ precipitation on the dayside of the auroral oval, and in the development of a pseudobreakup or substorm on the nightside of the oval. The auroral oval dynamics shows that after passage of an impulse of solar wind dynamic pressure the auroral activity weakens. In other words, the impulse of solar wind pressure in the presence of weakly negative IMF can not only cause the pseudobreakup/substorm development, but control this development as well.  相似文献   

17.
We compared fluxes of the 1–100 MeV solar energetic particles (SEP) measured in the interplanetary medium (ACE) and in the magnetosphere (Universitetsky-Tatiana, POES—in polar caps, and GOES-11—at geosynchronous orbit) during several SEP events of 2005–2006. Peak intensities of the SEP fluxes inside and outside the magnetosphere were compared for each event. It is shown that observed inside-outside difference depends mainly on direction of interplanetary magnetic field (IMF), on degree of the SEP anisotropy (pitch-angle distribution) in IMF, and on distance of the dayside magnetopause from the Earth.  相似文献   

18.
Using a single event as an example, we make an analysis of the time development of a substorm and estimate its influence on the motion of the low-latitude boundary of the magnetosphere. To this end, we compare the data on plasma and magnetic field obtained by five spacecraft (WIND, INTERBALL-1, GEOTAIL, GOES-8, and GOES-9) with measurements made by ground-based stations. It is shown that the release of energy of the geomagnetic tail begins from a disruption of the current sheet near the Earth. The high-speed plasma stream that transfers a magnetic flux to the Earth and can have an effect on the magnetic field configuration near the Earth is detected later. Almost simultaneously with a substorm onset a series of magnetopause crossings has been detected by the INTERBALL-1 satellite on the evening side of the low-latitude magnetosphere. In this paper we consider some of possible causes of this motion of the magnetosphere boundary, including variations of parameters of the solar wind, Kelvin-Helmholtz instability, and substorm processes. It is shown that fast motions of the magnetopause are detected almost simultaneously with field variations in the near magnetotail of the Earth and geomagnetic pulsations Pi2 on ground-based stations. A sufficiently high degree of correlation (K = 0.67) between the amplitude of Pi2 pulsations and the amplitude of magnetic field variations near the magnetopause is probably indicative of the connection of short-term motions of the magnetosphere boundary with the tail current disruption and the process of formation of a substorm current wedge.__________Translated from Kosmicheskie Issledovaniya, Vol. 43, No. 4, 2005, pp. 248–259.Original Russian Text Copyright © 2005 by Nikolaeva, Parkhomov, Borodkova, Klimov, Nozdrachev, Romanov, Yermolaev.  相似文献   

19.
Magnetic Storms in October 2003   总被引:1,自引:0,他引:1  
《Cosmic Research》2004,42(5):489-535
Preliminary results of an analysis of satellite and ground-based measurements during extremely strong magnetic storms at the end of October 2003 are presented, including some numerical modeling. The geosynchronous satellites Ekspress-A2and Ekspress-A3, and the low-altitude polar satellites Coronas-F and Meteor-3M carried out measurements of charged particles (electrons, protons, and ions) of solar and magnetospheric origin in a wide energy range. Disturbances of the geomagnetic field caused by extremely high activity on the Sun were studied at more than twenty magnetic stations from Lovozero (Murmansk region) to Tixie (Sakha-Yakutia). Unique data on the dynamics of the ionosphere, riometric absorption, geomagnetic pulsations, and aurora observations at mid-latitudes are obtained.  相似文献   

20.
To construct models for hazard prediction from radiation belt particles to satellite electronics, one should know temporal behavior of the particle fluxes. We analyzed 11-year variation in relativistic electron flux (E>2 MeV) at geosynchronous orbit using measurements made by GOES satellites during the 23rd sunspot cycle. As it is believed that electron flux enhancements are connected with the high-speed solar wind streams and ULF or/and VLF activity in the magnetosphere, we studied also solar cycle changes in rank order cross-correlation of the outer radiation belt electron flux with the solar wind speed and both interplanetary and on-ground wave intensity. Data from magnetometers and plasma sensors onboard the spacecraft ACE and WIND, as well as magnetic measurements at two mid-latitude diametrically opposite INTERMAGNET observatories were used. Results obtained show that average value of relativistic electron flux at the decay and minimum phases of solar activity is one order higher than the flux during maximum sunspot activity. Of all solar wind parameters, only solar wind speed variation has significant correlation with changes in relativistic electron flux, taking the lead over the latter by 2 days. Variations in ULF amplitude advance changes in electron flux by 3 days. Results of the above study may be of interest for model makers developing forecast algorithms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号