首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
主要针对喷管进行高低燃温组合推进剂与纯高燃温推进剂下的喉衬烧蚀实验分析,低燃温推进剂为丁羟低温推进剂和SCH?12低温推进剂。实验研究表明,丁羟低温推进剂和高温推进剂组合推进剂的烧蚀率为0.112 mm/s,SCH?12低温推进剂和高温推进剂为0.115 mm/s,纯高燃温推进剂的烧蚀率为0.133 mm/s,证明了高低燃温组合推进剂降低喉衬烧蚀的有效性与可行性。分析了然后对不同含量低燃温推进剂对比冲性能的影响,结果显示,使用比冲下降小、燃温低的推进剂能有效降低喉衬烧蚀,并对发动机比冲影响较小。  相似文献   

2.
添加降速剂和调节RDX/AP含量是调节NEPE推进剂燃速的两种常用途径。采用水下声发射燃速测试仪、密闭燃烧器、BSF φ75 mm发动机等测试方法,研究了低燃速NEPE推进剂静态高压燃烧性能规律和发动机动态高压燃烧稳定性。研究发现,NEPE推进剂的中低压区燃速随着降速剂含量增大而显著降低,高压区燃速降低幅度相对较小,燃速-压强(r-p)曲线在15 MPa和45 MPa出现两个拐点,而且降低RDX含量对降低高压段燃速作用显著。BSF φ75 mm发动机试车结果表明,低RDX含量的C1配方(28%)最大工作压强不超过20 MPa,而高RDX含量(38%)的C4配方最大工作压强达到30 MPa。发动机稳定燃烧的最大压强随NEPE推进剂的燃速降低而下降,主要原因是低燃速推进剂铝粉燃烧效率降低使凝聚相燃烧产物含量和粒度增大。  相似文献   

3.
用水下声发射法测试推进剂药条不同压强下的燃速,按维也里公式r=bpn计算某压强段的压强指数,研究了催化剂辛基二茂铁(T27)、炭黑(C)和铬酸铅(Pr)不同含量及其复合使用对含细粒度HMX的硝胺推进剂高低压燃烧性能影响。结果表明,随着T27含量的提高,推进剂燃速相应提高,T27降低高压段压强指数,在低压段反而增大;C、Pr对推进剂的高压燃速影响不明显;随着C含量的增加,低压段压强指数降低,高压段先增加后降低,降低效果非常明显;Pr使低压段压强指数稍有降低,高压段压强指数反而升高;T27、C、Pr催化剂复合使用对高低压燃速无协同效应,对降低低压段压强指数无协同效应,在对降低高压段压强指数,具有协同效应,高压段压强指数可降低为0.359 9。  相似文献   

4.
硝胺推进剂燃烧性能研究   总被引:7,自引:0,他引:7  
研究了硝胺推进剂中固体组分含量和粒度对推进剂燃速和压强指数的影响,得出了含量和粒度与硝胺推进剂的燃烧性能有着密切关系的结论。定性分析了它们对推进剂燃烧性能的影响,并从理论上说明了它们对推进剂燃烧性能产生影响的原因。  相似文献   

5.
硝胺对低燃速丁羟推进剂能量与燃速的影响   总被引:5,自引:0,他引:5  
鲁国林 《固体火箭技术》2001,24(2):45-47,63
从推进剂的能量特性和燃烧性能的角度探索了硝胺(RDX、HMX)在低燃速丁羟推进剂应用的可能性,结果表明:保持固体含量和铝粉含量恒定时,在推进剂中加入一定量的硝胺部分取代AP,可以提高低燃速丁羟推进 理论比冲和显著降低推进剂的燃速压强指数,但加入RDX、HMX降低丁羟推进剂燃速的幅度非常小。  相似文献   

6.
根据推进剂配方理论计算程序计算了含N-脒基脲二硝酰胺(FOX-12)、1,1-二氨基-2,2-二硝基乙烯(FOX-7)、3-硝基-1,2,4-三唑-5-酮(NTO)、三氨基三硝基苯(TATB)、3,4-二硝基呋咱基氧化呋咱(DNTF)、黑索今(RDX)、二硝酰胺铵(ADN)等高能钝感氧化剂及1,2,4-丁三醇三硝酸酯(BTTN)、二缩三乙二醇二硝酸酯(TEGDN)、三羟甲基乙烷三硝酸酯(TMETN)、N-丁基-2-硝酸酯乙基硝胺(Bu-NENA)等钝感增塑剂的几种单元推进剂和钝感微烟推进剂的能量性能。计算结果表明,所列的7种含能氧化剂中,由RDX和DNTF形成的单元推进剂的标准理论比冲分别为2 696.4 N.s/kg和2 610.2 N.s/kg,明显优于其他几种氧化剂。当采用DNTF部分取代GAP推进剂中的RDX或ADN后,推进剂的理论比冲、密度和特征速度相应提高。由于DNTF的感度低于RDX,因此DNTF引入推进剂中,对提高钝感GAP微烟推进剂的能量性能是有益的。  相似文献   

7.
针对高燃速推进剂的发展需求,筛选出一种成本较低的二茂铁型碳硼烷衍生物TPT-01,研究了其作为燃速催化剂对高燃速丁羟(HTPB)固体推进剂工艺性能、燃烧性能、安全性能的影响及迁移性情况。结果表明,添加6%TPT-01的HTPB推进剂药浆粘度较低,工艺性能良好;HTPB推进剂药浆及成品药安全性能良好;HTPB推进剂6.86 MPa下燃速由24.2 mm/s提高至49.6 mm/s, 6.86~15 MPa的静态燃速压强指数为0.330;此外,TPT-01在HTPB推进剂中的迁移性低于辛基二茂铁,有利于HTPB推进剂的燃烧稳定性和界面粘接性能;相较于辛基二茂铁和正己基碳硼烷NHC物理掺混使用,TPT-01是一种效果更好的燃速催化剂。  相似文献   

8.
对固体推进剂的动态燃烧进行了理论分析和实验研究,建立了推进剂动态燃烧的理论模型,并推导出了推进剂动态燃速公式.实验研究中发现推进剂燃烧过程中压强变化率对其燃速有显著影响,且压强变化率越大,影响也越明显;动态燃速要比静态燃速最多可高出40.2%(MDB)和17.7%(复合推进剂).  相似文献   

9.
为了获得变推力发动机用高压强指数聚叠氮缩水甘油醚(GAP)推进剂配方,采用靶线法研究了氧化剂的种类、粒径及配比、燃速催化剂的种类及含量、以及增塑比对GAP推进剂静态燃烧性能的影响规律,采用?118标准试验发动机对GAP推进剂进行了动态燃烧性能测试。研究表明,通过综合因素调节获得了一种高压强指数GAP推进剂配方,且当燃速催化剂RC-4含量1%时,GAP推进剂在1~15 MPa范围的动态压强指数高达0.66,满足变推力发动机对推进剂压强指数的要求,同时高压区间(9~15 MPa)的动态压强指数为0.51,低于1~15 MPa的压强指数,这有利于推进剂在高压范围内的稳定燃烧,为变推力发动机在高压范围内的正常工作提供依据。  相似文献   

10.
高氯酸铵/硝胺复合推进剂中主氧化剂地位的确定   总被引:2,自引:0,他引:2  
本文提出了高氯酸铵/硝胺复合推进剂在燃烧性能方面存在主氧化剂的概念,并利用建立的燃烧模型,从氧化剂燃烧单元对燃面能量的贡献,扩散距离的不同求解方法对燃速和压力指数计算结果的影响,以及硝胺含量与推进剂压力指数的关系三个方面探讨了确定主氧化剂的方法。经过分析,得知主氧化剂对推进剂燃烧性能起着重要影响,因此,调节高氯酸铵/硝胺推进剂燃烧性能的方法与调节只含主氧化剂推进剂燃烧性能的各种方法相同。  相似文献   

11.
团聚硼对富燃料推进剂燃烧性能的影响   总被引:2,自引:0,他引:2  
考察了不同粒度、不同包覆剂的团聚硼对含硼富燃料推进剂燃烧性能的影响。结果表明,随团聚硼颗粒粒度的增大,推进剂的燃速增加,低压可燃极限降低,但燃速压强指数呈下降的趋势;包覆材料AP、L iF有利于提高推进剂的燃速,降低低压可燃极限,但不利于提高燃速压强指数。  相似文献   

12.
镁铝富燃料推进剂燃烧性能研究   总被引:3,自引:0,他引:3  
为了研究镁铝富燃料推进剂燃烧性能,采用捏合机混合物料、真空浇注、恒温固化的方法制备推进剂试样,用靶线法测试推进剂燃速(0.5~2.0 MPa),用Vieille经验公式r=apn计算压强指数。研究表明,细粒度AP含量增加,燃速逐渐增加,而压强指数先升高后降低。采用复合催化剂GFP/Fe2O3可同时提高燃速和压强指数。当催化剂质量含量为5%时,改变GFP/Fe2O3比对推进剂的燃速及压强指数的影响与氧化剂AP级配有关。对于细粒度AP含量高的配方,GFP/Fe2O3对燃速和压强指数影响较大。金属含量对燃速影响较大,对压强指数影响很小。而Mg/Al比对燃速和压强指数影响都很小。随着氧化剂中KP含量增大,燃速呈下降趋势,压强指数先升高后下降。  相似文献   

13.
Bu-NENA/PBT推进剂安全性能   总被引:1,自引:0,他引:1  
开展了增塑剂品种、固体填料含量对Bu-NENA/PBT推进剂安全性能影响研究,炸药HMX和增塑剂Bu-NENA含量对Bu-NENA/PBT推进剂危险等级影响研究及钝感Bu-NENA/PBT推进剂综合性能评价。研究结果表明,Bu-NENA可显著降低PBT推进剂的机械感度,HMX含量控制在13%以下,Bu-NENA含量控制在12%以下,Bu-NENA/PBT推进剂危险等级评定为1.3级,Bu-NENA/PBT推进剂理论比冲大于267 s,玻璃化温度Tg为-65℃,-60~70℃宽温力学性能优良。  相似文献   

14.
低燃速丁羟固体推进剂能量特性研究   总被引:1,自引:0,他引:1  
采用最小自由能原理对低燃速丁羟推进剂进行了能量特性计算研究,总结了草酸铵含量、燃烧室压强等因素对推进剂能量性能的影响规律,确定了新的低燃速推进剂配方,并用Φ315标准试验发动机实测结果进行了对比。  相似文献   

15.
含Cs盐的HTPB/AP/Al复合推进剂特性研究   总被引:1,自引:0,他引:1  
采用高倍率的扫描电镜观察了Cs盐的微观形貌,利用最小自由能法计算了不同含量Cs盐的复合推进剂能量性能并进行了测试,对Cs盐、含Cs盐复合推进剂的安全性能(撞击感度和摩擦感度)进行了评价,并对不同含量Cs盐推进剂的燃烧性能和燃烧火焰结构等性能进行了研究。结果表明,Cs盐的颗粒粒径较大,表面凹凸不平很不规则;含Cs盐复合推进剂的能量随Cs盐质量分数的增加稍有减小,推进剂密度从1.766 g/cm3提高到1.851 g/cm3;相对于AP,Cs盐和含Cs盐复合推进剂的感度均较低,当Cs盐含量为6%时,复合推进剂的机械感度最低,说明Cs盐在复合推进剂中应用是安全可行的;复合推进剂的燃速随Cs盐质量分数的增加而增大,当Cs盐含量为6%时,复合推进剂的压力指数降低幅度最大。  相似文献   

16.
利用DSC-TG联用和燃速测试等方法,从降低CMDB推进剂和AP类复合推进剂压强指数的燃速调节剂中,筛选出了纳米PbO、QC、C及SEA、Fe2O3、Co3O4等燃速调节剂,并考察了这些燃速调节剂对NEPE推进剂燃烧性能的影响。通过分析两类燃速调节剂发挥作用的主要压强区间及其对推进剂燃速的影响趋势,对两类燃速调节剂进行了复配研究。试验结果表明,复合调节剂ZH-2(由纳米过渡金属氧化物、铅/铜盐等复配而成)使NEPE推进剂高压(10~25 MPa)燃速压强指数由0.78降低至0.62,而且在宽压强范围内消除了压强指数的拐点。  相似文献   

17.
用一种多分散的含铝固体推进剂的燃烧模型来确定具有单峰氧化剂分布的AP/Al/HTPB 推进剂的发动机温度敏感系数.铝粉含量在(0~20)%(质量百分比)之间变化,推进剂燃面与喷管喉面之比为250~500.结果表明,推进剂铝粉含量对发动机温度敏感系数的影响与发动机的燃喉面积比 K_H 有关.通常,增加燃喉面积比,发动机温度敏感系增至某一最大值,然后随发动机燃喉面积比的增加而减小.燃速系数和压强指数随初温和铝粉含量的变化,对发动机温度敏感系数有明显影响。而特征速度对温度敏感系数影响不大,但常常是增加的。  相似文献   

18.
对大型发动机用的低燃速高固体含量HTPB推进剂进行了研制。采用超支化SU-2助剂降低推进剂药浆粘度为提高配方固体含量的方式,优化SU-2助剂含量,研制出固体质量分数89%的推进剂配方。依据抑制AP分解的质子转移机理,分别用高氯酸烷基胺衍生物A1N、草酸铵T29降燃速剂,获取低燃速HTPB推进剂,针对试验得到的推进剂性能数据,分析了单项降燃速剂的推进剂燃烧性能存在不足,提出了选用价廉的高氯酸烷基胺衍生物A1N/草酸铵T29/细AP复配方法,既降低燃速又能降低压强指数。经装药试验验证,获得6.86 MPa燃速5.185 mm/s,3~11 MPa压强指数0.328,密度≥1.80 g/cm3,20℃最大拉伸强度σm≥1.0 MPa,-40℃最大伸长率εm≥61.0%;5 h使用期粘度为2625 Pa·s;综合性能优良的高固体含量低燃速HTPB推进剂。以提高推进剂固体含量增加密度,增大HTPB推进剂比冲的设计方法,可供低燃速HTPB推进剂的发动机借鉴。  相似文献   

19.
氧化剂和团聚硼粒度对富燃料推进剂燃速特性的影响   总被引:1,自引:0,他引:1  
考察了细AP和团聚硼含量对含硼富燃料推进剂燃速特性的影响.结果表明,随细AP含量和团聚硼含量的增大,推进剂燃速增加,燃速压强指数也呈增加趋势.同时,以BDP模型为基础,将硼粒度对推进剂燃速特性的影响引入燃速表达式,表达式表明细AP和团聚硼有利于提高氧化剂的燃烧表面积在燃面上的比例,从而有利于提高推进剂的燃速.  相似文献   

20.
采用水下声发射法测试了聚叠氮缩水甘油醚(GAP)/六硝基六氮杂异伍兹烷(CL-20)高能推进剂燃速,使用最小二乘法计算燃速压强指数,开展了GAP/CL-20高能推进剂燃烧性能调节研究.结果表明,减小CL-20粒度、增大AP粒度、使用增塑剂Bu-NENA(丁基硝氧乙基硝胺)部分取代硝酸酯增塑剂等途径,均可降低GAP/CL...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号