首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 261 毫秒
1.
为了研究攻角导致的来流条件非定常变化对高超声速进气道性能的影响,以一个设计马赫数为6的侧压式进气道为研究对象,结合数值模拟的方法,在马赫数为3.85条件下进行了攻角动态变化的风洞实验,攻角变化范围为0°~8.2°,最大频率达到10.4Hz.研究结果表明:工作在大攻角时,侧压式进气道出现不起动现象,流场特征出现很大变化;攻角动态变化时,进气道重复出现起动-不起动-再起动现象,由于受到壁面运动的影响,壁面点压力随攻角的变化曲线出现一定的迟滞现象,这在不起动时尤为明显;当进气道攻角动态频率增加时,进气道不起动时的攻角逐渐增加,而再起动时的攻角逐渐减小.   相似文献   

2.
超音速进气道建模方法研究   总被引:2,自引:0,他引:2  
对某可调混压进气道在不同攻角、不同马赫数、不同斜板角度下进行了大量的数值计算。给出了设计状态下进气道内外流场特征;分析了攻角变化对进气道流场的影响;以数值仿真结果为基础,利用B样条理论建立了反映攻角、马赫数及可调斜板角度变化的超声速进气道数学模型。根据此数学模型,分析了攻角和进口气流马赫数对进气道性能的影响,同时给出了斜板对进气道性能的影响。   相似文献   

3.
二元高超声速进气道动态攻角特性风洞实验   总被引:2,自引:1,他引:1  
为了研究攻角导致的来流定常/非定常变化对二元高超声速进气道性能的影响,在马赫3.85条件下,对一个设计马赫数为6.0的二元高超声速进气道进行了动态攻角变化的风洞实验。实验中,攻角在0°~8.2°连续变化,动态频率最大达到9.3Hz。实验研究表明:攻角在0°~8.2°连续变化过程中,进气道始终保持着起动状态;攻角增加使进气道出口增压比逐渐上升,流量系数、出口总压恢复系数和出口马赫数逐渐降低;在保持起动状态的攻角连续变化过程中,振荡的二元高超声速进气道其性能变化趋势与准稳态时相似,攻角的动态变化未对进气道性能产生显著影响。  相似文献   

4.
弹用S弯进气道气动性能试验   总被引:3,自引:2,他引:1  
对一种弹用S弯进气道进行了试验,结果表明:①偏航角一定,攻角由负到正变化时,总压恢复系数先上升后变化不大,|DC60|则先下降后小幅升高;②攻角一定,总压恢复系数和|DC60|随偏航角的增加均呈先升高后降低的趋势;③大的攻角和偏航角组合状态下,总压恢复系数较低,|DC60|偏大,但随偏航角进一步增大,进气道性能有所改善;④进/发匹配点处,进气道出口压力功率频谱较平坦且对姿态角和来流马赫数的变化均不敏感;⑤发动机小流量状态时,进气道模型发生了喘振,频率约为150 Hz.   相似文献   

5.
针对一种定几何二元倒置"X"型混压式超声速进气道开展了数值仿真研究, 结果表明:随着来流马赫数的增加, 进气道总压恢复系数下降, 而流量系数却先上升, 在设计点达到最大值后下降.当攻角变化时, 小攻角α<6°时迎背风两侧进气道总压恢复系数虽有下降但变化幅度不大, 对于流量系数, 在小攻角α<6°下背风侧进气道高于迎风侧进气道, 但两侧总的流量随攻角变化不大;在大攻角状态下(α=6°~9°), 背风侧进气道总压恢复系数和流量系数均下降剧烈, 而迎风侧进气道总压恢复系数虽然下降但流量系数却有上升.同时, 与实验结果对比表明, 两者规律趋势一致.   相似文献   

6.
一种腹下S弯进气道低速大攻角下气动特性实验   总被引:3,自引:2,他引:1  
对一种腹下S弯进气道进行了实验研究,得到了低速大攻角下的气动特性,结果表明:随出口马赫数的增加,腹下S弯进气道出口截面的总压恢复系数不断下降,稳态周向畸变指数、紊流度和综合畸变指数均上升;出口马赫数为0.45时,进气道出口总压信号的功率谱在220Hz处存在峰值,内通道发生了局部流动分离;与地面抽吸状态相比,该进气道在低速大攻角状态下具有较高的总压恢复系数,虽综合畸变指数也偏大,但能够满足发动机正常工作的要求.   相似文献   

7.
针对一种带放气槽的定几何二元倒置"X"型混压式超音速进气道进行了风洞吹风实验。结果表明:随着来流马赫数的增加,进气道总压恢复系数不断减小,流量系数却先增加,在设计点达到最大值后减小;当攻角变化时,两侧进气道变化各异,在小攻角α≤60时,随着攻角的增加,迎背风两侧进气道的总压恢复系数均有所下降,但背风侧进气道总压恢复系数高于迎风侧进气道,在流量系数方面,背风侧进气道先增加后减小,而迎风侧进气道一直保持缓慢下降,但两侧总的流量保持变化不大,在大攻角(α=60-90)状态下,背风侧进气道总压恢复系数和流量系数均下降剧烈,而迎风侧进气道总压恢复系数下降但流量系数却有所上升;同时,通过与不带放气槽进气道的速度特性以及反压特性对比发现,放气槽的存在不但增加了进气道的稳定工作范围,而且对进气道在高马赫数下性能的提高也大有裨益。本文为倒置"X"型进气道的设计、改进提供了实验依据。  相似文献   

8.
超声速溢流条件下二元超声速进气道附加阻力计算   总被引:5,自引:4,他引:1  
通过几何关系导出了单楔、双楔和三楔超声速进气道在零攻角及有攻角时的附加阻力系数计算公式,并进一步得出了N-1楔进气道的附加阻力系数计算通用公式.通过算例研究分析了飞行马赫数、飞行攻角及进气道总转角对附加阻力的影响.分析表明,进气道在超声速溢流条件下,附加阻力只同飞行马赫数、攻角及各楔面转角有关;附加阻力随飞行马赫数增加而减少,随攻角及进气道外压缩面总转角增大而增大;对于加速爬升用冲压发动机而言,设计时应注意减少附加阻力,并结合弹道、气动外形合理选择攻角.  相似文献   

9.
一级锥可调变几何轴对称进气道初步研究   总被引:2,自引:1,他引:1  
为了改善轴对称进气道的攻角特性,提出一种简单易实现的轴对称变几何方法:通过旋转轴对称进气道第1级压缩锥改变进气道前体激波的角度和位置.采用数值仿真方法研究了来流马赫数为3和4时,不同飞行攻角条件下一级锥可调变几何进气道的三维流场和性能特性,并与定几何进气道进行对比分析.结果表明:大攻角下,采用一级锥可调进气道除了可以提高进气道的质量流量系数外,还有效缓解了背风侧低能流堆积问题;存在一个最佳的旋转角度,使该攻角下进气道性能最高;随着攻角的增大,所需的旋转角度增大,进气道所获得的性能增益也随之提高,在马赫数为3,攻角为14°时推力增益达到7.7%.   相似文献   

10.
马赫数4~7的高超侧压式进气道气动设计与性能   总被引:3,自引:2,他引:1  
对巡航马赫数为7、转级马赫数为4的宽范围侧压式进气道进行了设计,讨论了主要设计参数的选取原则,给出了一种曲面压缩的高性能侧压式进气道设计方案,并利用数值仿真手段对其流场结构及性能进行了研究.结果表明,所设计的侧压式进气道在马赫数Ma=4时的流量系数达到0.753,最大正攻角可达6°以上.Ma=6时,流量系数达到0.94...  相似文献   

11.
进气道载荷的预示和限制是超声速飞行器设计中的关键问题。以典型颌下进气超声速飞行器为研究对象,对其进气道流场进行数值仿真,研究不同马赫数、攻角、侧滑角及余气系数条件下的进气道压力特性;针 对进气道压力工程估算及设计需求,使用无量纲和解耦的方法,对进气道压力经验公式进行拟合;反算飞行试 验中的进气道压力,并与测量结果进行对比。结果表明:进气道压力随马赫数增大而增大,随余气系数增大而 减小;正常工作包线内,较小的攻角、侧滑角对进气道压力影响不明显;进气道压力经验公式计算值与飞行试验 测量值符合较好,具有较高的精度。  相似文献   

12.
An investigation on the ventral diverterless high offset S-shaped inlet is carried out at Mach numbers from 0.600 to 1.534, angles of attack from -4° to 9.4°, and yaw angles from 0° to 8°. Results indicate: (1) a large region of low total pressure exists at the lower part of the inlet exit caused by the counter-rotating vortices in the S-shaped duct; (2) the performances of the inlet at Mach number 1.000 reach almost the highest, so the propulsion system could work efficiently in terms of aerodynamics; (3) the total pressure recovery increases slowly at first and then remains unvaried as the Mach number rises from 0.6 to 1.0, however, it does in an opposite manner in the conventional diverter-equipped S-shaped inlet; (4) the performances of the inlet are generally insensitive to angles of attack from -4° to 9.4° and yaw angles from 0° to 8° at Mach number 0.850, and angles of attack from -2° to 6° and yaw angles from 0° to 5° at Mach number 1.534.  相似文献   

13.
一种平面埋入式进气道气动特性的试验   总被引:1,自引:0,他引:1  
谢文忠  郭荣伟 《航空学报》2008,29(6):1460-1466
 针对一种平面埋入式进气道开展了高速吹风试验研究,获得了沿程静压分布、出口总压恢复图谱、基本气动性能和压力脉动特性。结果表明:沿程静压分布曲线显示,气流绕前唇口流动是先膨胀加速后减速扩压,进入内通道后上壁面静压均高于下壁面;巡航状态Ma0=0.7,α=2°,β=0°时,进气道总压恢复系数σ=0.951,综合畸变指数W=3.55%,具有较高的性能;当Ma0=0.6~0.8,α0=-4°~6°,β=0°~4°范围内,σ在0.912~0.964之间,综合畸变指数在2.68%~7.43%之间,表明该平面埋入式进气道能够在较宽广的飞行包线内以较高的性能安全工作;脉动压力分析表明,出口总压脉动频谱均呈现出白噪声特征,无明显窄带信号出现,这对进气道/发动机匹配工作是有利的。  相似文献   

14.
高超进气道自适应泄压槽的设计参数分析   总被引:1,自引:1,他引:0  
采用自适应泄压控制技术解决宽范围定几何高超进气道低马赫数下自起动问题,利用数值仿真对一种采用自适应泄压控制的高性能二元高超进气道单个自适应泄压槽的位置、角度、有效流通面积等主要设计参数对泄漏量以及进气道总体性能的影响规律开展了研究.结果表明:泄压槽参数变化对基准进气道总体性能影响较小,总压恢复系数在2%范围内变化.位于唇口激波反射点下游的槽的泄漏量较大且随开槽角度的增加而减小,随有效流通面积的增加成线性增加;相同条件下,自适应泄压槽的泄漏量只有常规顺向放气槽的50%;随来流马赫数升高,自适应泄压槽的漏气量明显减小,高马赫数下接近气动自封闭状态.   相似文献   

15.
为了研究高超声速咽式进气道在非设计迎角以及低马赫数下的起动性能,利用流线追踪生成了设计马赫数Ma=7,具有8-7无粘基本流场(即俯仰平面内的斜激波由和自由来流呈8°夹角的斜压缩面产生;偏航平面内的斜激波由和自由来流呈7°夹角的斜压缩面产生)的咽式进气道,并对边界层修正前后的两种咽式进气道进行了数值模拟和高超声速风洞实验。实验观测和记录了各个来流条件下进气道模型唇口的激波系结构,测量了沿进气道模型上下壁面中心线从气流进口到出口的沿程静压分布。结果表明:迎角的增大和来流马赫数的减小都会对进气道的起动性能造成不利的影响,通过对咽式进气道进行边界层修正,可以提高进气道的总压恢复系数,减小内收缩比,从而扩宽进气道起动的马赫数以及迎角范围,对进气道设计有着积极的作用。  相似文献   

16.
在低速来流状态下试验研究了大攻角(α=0°~45°)和侧滑角(β=-15°~15°)对Caret进气道气动性能的影响。给出了在各攻角下进气道性能参数随侧滑角变化的特点及典型状态下进气道出口总压恢复系数分布图谱,分析了出口总压分布图谱与进气口流动之间的关系。试验表明:在低速来流状态(Ma≈0.1)下,随着攻角的增加(α从0°增加到45°),进气道总压恢复系数下降较小,总压畸变指数几乎不变,这有利于飞机的大攻角机动飞行。   相似文献   

17.
双下侧布局带泄流腔二元进气道试验   总被引:18,自引:2,他引:16  
针对一种双下侧布局带泄流腔的二元进气道进行了试验研究.试验时,来流速度范围Ma=2.0~3.5,姿态角范围为α=-4°~10°,β=0°~4°.试验获得了进气道的反压特性曲线、速度特性曲线、迎角特性曲线和侧滑角特性曲线.分析表明,随着来流速度和迎角的增加,进气道的流量系数先增加,在设计点达到最大,之后由于弹身头部激波的影响略有减小.侧滑时两侧进气道气流状态不同,工作范围由性能较低的迎风侧进气道来决定.另外,通过分析进气道的沿程静压分布曲线,说明泄流腔结构能使结尾激波停留在泄流腔边缘,扩大了进气道的工作范围.   相似文献   

18.
高亚声速轴流压气机的优化叶型   总被引:2,自引:2,他引:0  
基于计算流体动力学和数值优化算法,研究了一种压气机叶型优化设计方法.以入口马赫数为0.7的高亚声速轴流压气机叶型为研究对象,采用拉丁超立方实验法选取优化变量并构建了考虑攻角特性的目标函数,通过引入Gamma-Theta转捩模型,考虑了附面层转捩的影响,最终获得了可以有效改善攻角特性和降低总压损失的高亚声速轴流压气机优化叶型.计算结果表明:优化叶型可以显著降低入口马赫数为0.2~0.8时+4°和-4°攻角的总压损失,使设计工况(入口马赫数为0.7)下的低损失攻角增加4°以上,优化叶型最佳稠度降低20%并改善低雷诺数时叶栅的流动特性.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号