首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spectra of many cool DZ white dwarfs show extremely broad resonance lines of ionized calcium and magnesium in the optical and ultraviolet region. When the line center is strongly saturated, these wings may become a significant source of additional opacity in cool white dwarf atmospheres. The omission of this opacity results in systematic errors in the predicted flux distribution and hence in the effective temperatures and element abundances. In a continuation of Homeier et al. (2007) and Allard et al. (2012), where we presented absorption spectra of Na–He in cool white dwarfs, we extend this work to the Ca+–He system.  相似文献   

2.
Recent observations with Chandra and XMM-Newton   have shown that the X-ray source 1WGA J1346.5–6255 is associated with the Be star HD 119682, a member of the open cluster NGC 5281, and displays all the characteristics of the new class of X-ray sources known as γγ-Cas analogues. We present a detailed spectroscopic study of this open cluster, finding an age of 40 Myr and a sequence of evolved stars. These results imply that HD 119682 is a blue straggler in NGC 5281, as it is much more massive than any other cluster member, and its membership is strongly suggested by proper motion analysis. This is the second γγ-Cas analogue found to be blue straggler in an open cluster, suggesting that evolution plays a role in the formation of these systems and that a supernova explosion has not occurred in them.  相似文献   

3.
Cool objects glow in the infrared. The gas and solid-state species that escape the stellar gravitational attraction of evolved late-type stars in the form of a stellar wind are cool, with temperatures typically ?1500 K, and can be ideally studied in the infrared. These stellar winds create huge extended circumstellar envelopes with extents approaching 10191019 cm. In these envelopes, a complex kinematical, thermodynamical and chemical interplay determines the global and local structural parameters. Unraveling the wind acceleration mechanisms and deriving the complicated structure of the envelopes is important to understand the late stages of evolution of ∼97% of stars in galaxies as our own Milky Way. That way, we can also assess the significant chemical enrichment of the interstellar medium by the mass loss of these evolved stars. The Herschel Space Observatory is uniquely placed to study evolved stars thanks to the excellent capabilities of the three infrared and sub-millimeter instruments on board: PACS, SPIRE and HIFI. In this review, I give an overview of a few important results obtained during the first two years of Herschel observations in the field of evolved low and intermediate mass stars, and I will show how the Herschel observations can solve some historical questions on these late stages of stellar evolution, but also add some new ones.  相似文献   

4.
Although rotating neutron stars (NSs) have been regarded as being textbook examples of astrophysical particle acceleration sites for decades, details of the acceleration mechanism remain a mystery; for example, we cannot yet observationally distinguish “polar cap” models from “outer gap” models. To solve the model degeneracy, it is useful to study similar systems with much different physical parameters. Strongly magnetized white dwarfs (WDs) are ideal for this purpose, because they have essentially the same system geometry as NSs, but differ largely from NSs in the system parameters, including the size, magnetic field, and the rotation velocity, with the induced electric field expected to reach 1013–1014 eV. Based on this idea, the best candidate among WDs, AE Aquarii, was observed with the fifth Japaneses X-ray satellite, Suzaku. The hard X-ray detector (HXD) on-board Suzaku has the highest sensitivity in the hard X-ray band over 10 keV. A marginal detection in the hard X-ray band was achieved with the HXD, and was separated from the thermal emission. The flux corresponds to about 0.02% of its spin-down energy. If the signal is real, this observation must be a first case of the detection of non-thermal emission from WDs.  相似文献   

5.
We have analysed a sample of 328 time-integrated GRB prompt emission spectra taken via the Konus instrument on board the US GGS-Wind spacecraft between 2002 and 2004 using a couple of two-components models, Cut-off Power Law (CPL) + Power Law (PL) and blackbody (BB) + PL. The spectra show clear deviation from the Band function. The PL term is interpreted as the low energy tail of a nonthermal emission mechanism. The distributions of corresponding index β give values β < −2/3 consistent with synchrotron and synchrotron self-Compton mechanisms. The distribution of low energy index α associated with the CPL term shows clear discordance with synchrotron models for 31.4% of the analysed GRBs with values exceeding that for the line of death, α = −2/3. Then, a set of nonthermal radiation mechanisms producing harder slopes, i.e., α > −2/3, are presented and discussed. For the remaining majority (68.6%) of GRBs with CPL index α < −2/3, we show that optically thin synchrotron produced by a power law electron distribution of type, N(γ) ∼ γp, γ1 < γ < γ2, for finite energy range (γ2 ≠ ∞) is a likely emission mechanism with α ∼−(p + 1)/2 in the frequency range ν1 ? ν ? ν2 (where ν2 = η2ν1 with η = γ2/γ1), such that for p > 1/3, one gets α < −2/3. We also show that corresponding spectra in terms of Fν and νFν functions are peaked around frequency ν2 instead of ν1, respectively for p < 1 and p < 3. Besides, thermal emission is examined taking a single Planck function for fitting the low energy range. It can be interpreted as an early emission from the GRB fireball photosphere with observed mean temperature, kT′ ∼ 16.8 keV. Furthermore, we have performed a statistical comparison between the CPL + PL and BB + PL models finding comparable χ2-values for an important fraction of GRBs, which makes it difficult to distinguish which model and specific radiation mechanism (possible thermal or nonthermal γ-ray emissions) are best suitable for describing the reported data. Therefore, additional information for those bursts, such as γ-ray polarization, would be highly desirable in future determinations of GRBs observational data.  相似文献   

6.
We discuss the relevance of UV data in the detection and characterization of hot massive stars and young stellar populations in galaxies. We show results from recent extensive surveys in M31 and M33 with Hubble Space Telescope (HST) multi-wavelength data including UV filters, which imaged several regions at a linear resolution (projected) of less than half a pc in these galaxies, and from GALEX far-UV and near-UV wide-field, low-resolution imaging of the entire galaxies. Both datasets allow us to study the hierarchical structure of star formation: the youngest stellar groups are the most compact, and are often arranged within broader, sparser structures. The derived recent star-formation rates are rather similar for the two galaxies, when scaled for the respective areas. We show how uncertainties in metallicity and type of selective extinction for the internal reddening may affect the results, and how an appropriate complement of UV filters could reduce such uncertainties, and significantly alleviate some parameter degeneracies.  相似文献   

7.
A strong X-ray emission is one of the defining signatures of nuclear activity in galaxies. According to the Unified Model for Active Galactic Nuclei (AGN), both the X-ray radiation and the prominent broad emission lines, characterizing the optical and UV spectra of Type 1 AGNs, are originated in the innermost regions of the sources, close to the Super Massive Black Holes (SMBH), which power the central engine. Since the emission is concentrated in a very compact region (with typical size r?0.1r?0.1 pc) and it is not possible to obtain resolved images of the source, spectroscopic studies of this radiation represent the only valuable key to constrain the physical properties of matter and its structure in the center of active galaxies. Based on previous studies on the physics of the Broad Line Region (BLR) and on the X-ray spectra of broad (FWHMHβ ? 2000 km s−1) and narrow line (1000 km s−1 ?FWHMHβ ? 2000 km s−1) emitting objects, it has been observed that the kinematic and ionization properties of matter close to the SMBHs are related together, and, in particular, that ionization is higher in narrow line sources. Here we report on the study of the optical and X-ray spectra of a sample of Type 1 AGNs, selected from the Sloan Digital Sky Survey (SDSS) database, within an upper redshift limit of z=0.35z=0.35, and detected at X-ray energies. We present analysis of the broad emission line fluxes and profiles, as well as the properties of the X-ray continuum and Fe Kα emission and we use these parameters to assess the consistency of our current AGN understanding.  相似文献   

8.
Nearby pulsars B0656+14 and Geminga were proposed in the literature as the main sources of cosmic-ray positrons observed near Earth above 10 GeV. B0656+14 has comparable distance from Earth, similar magnetic field and period of Geminga. However, observations in the R and I bands indicate the presence of a disk of approximately 10−4 M around B0656+14. Radio and pulsed γ-ray flux observations from this pulsar are also consistent with supernova fallback material and disk entering the light cylinder and partially quenching the development of electromagnetic showers in the magnetosphere. If this is the case, B0656+14 has unlikely given any contribution to e+ and e observed near Earth. Absolute flux measurements and the level of anisotropy in the high energy electron and positron arrival directions above 50 GeV will help in revealing if none, one of both nearby pulsars are sources of these particles observed near Earth.  相似文献   

9.
We have observed the Cygnus Loop from the northeast (NE) to the southwest (SW) with XMM-Newton. We extracted spectra from 3′-spaced annular regions across the Loop and fitted them either with a one-kTe-component non-equilibrium ionization (NEI) model or with two-kTe-component NEI model. We found that the two-kTe-component model yields significantly better fits in almost all the spectra than the one-kTe-component model. Judging from the abundances, the high-kTe-component in the two-temperature model must be fossil ejecta while the low-kTe-component comes from the swept-up interstellar medium (ISM). The distributions of Ne, Mg, Si, and S for fossil ejecta appear to retain the onion-skin structure at the time of a supernova explosion, suggesting that significant overturning of the ejecta has not occurred yet. Comparing the relative abundances of fossil ejecta estimated for the entire Cygnus Loop with those from theoretical calculations for Type-II SN, the mass of the progenitor star is likely to be ∼13 M. The trends of the radial profiles of kTe and emission integral for the swept-up ISM are adequately described by the Sedov model, suggesting that the swept-up ISM is concentrated in a shell-like structure. Comparing our data with the Sedov model, we found the ambient medium density to be ∼0.7 cm−3. Then, we estimated the total mass of the swept-up ISM and the age of the remnant to be ∼130 M and 13,000 years, respectively. Note that if the explosion occurred within a stellar wind cavity, then the density in the cavity, the total swept-up mass in the cavity, and the age of the remnant are estimated to be ∼0.14 cm−3, ∼25 M, and ∼10,000 years, respectively.  相似文献   

10.
To investigate the feasibility of new satellite observations, including air quality (AQ) observations from geostationary (GEO) orbit, it is essential to link the measurement precision (ε) with sensor specifications in advance. The present study attempts to formulate the linkage between ε and specifications of a UV/visible sensor (signal-to-noise ratio (SNR), full width at half maximum (FWHM) of the slit function, and sampling ratio (SR)) on a GEO satellite. A sophisticated radiative transfer model (JACOSPAR) is used to calculate synthetic radiance spectra that would be measured by a UV/visible sensor observing the atmosphere over Tokyo (35.7°N, 139.7°E) from GEO orbit at 120°E longitude. The spectra, modified according to given sensor specifications, are analyzed by the differential optical absorption spectroscopy technique to estimate the ε for slant column densities of O3 and NO2. We find clear relationships: for example, the ε of the O3 slant column density (molecules cm−2) and SNR at 330 nm are linked by the equation log(ε) = −1.06 · log(SNR) + 20.71 in the UV region, and the ε of the NO2 slant column density and SNR at 450 nm are linked by log(ε) = −0.98 · log(SNR) + 18.00, at a FWHM = 0.6 nm (for the Gaussian slit function) and SR = 4. The relationships are mostly independent of other specifications (e.g., horizontal and temporal resolutions), as they affect ε primarily through SNR, providing constraints in determining the optimal SNR (and alternatively FWHM and SR) for similar UV/visible sensors dedicated for AQ studies.  相似文献   

11.
In this paper, we discuss our first attempts to model the broadband persistent emission of magnetars within a self-consistent, physical scenario. We present the predictions of a synthetic model that we calculated with a new Monte Carlo 3D radiative code. The basic idea is that soft thermal photons (e.g. emitted by the star surface) can experience resonant cyclotron upscattering by a population of relativistic electrons treated in the twisted magnetosphere. Our code is specifically tailored to work in the ultra-magnetized regime; polarization and QED effects are consistently accounted for, as well different configurations for the magnetosphere. We discuss the predicted spectral properties in the 0.1–1000 keV range, the polarization properties, and we present the model application to a sample of magnetars soft X-ray spectra.  相似文献   

12.
We explore the capabilities of the future space science mission IXO (International X-ray Observatory) for obtaining cosmological redshifts of distant Active Galactic Nuclei (AGNs) using the X-ray data only. We first find in which regions of the X-ray luminosity (LX) versus redshift (z) plane the weak but ubiquitous Fe Kα narrow emission line can deliver an accurate redshift (δz < 5%) as a function of exposure time, using a CCD-based Wide Field Imager (IXO/WFI) as the one baselined for IXO. Down to a 2–10 keV X-ray flux of 10−14 erg cm−2 s−1 IXO/WFI exposures of 100 ks, 300 ks and 1 Ms will deliver 20%, 40% and 60% of the redshifts. This means that in a typical 18′ × 18′ IXO/WFI field of view, 4, 10 and 25 redshifts will be obtained for free from the X-ray data alone, spanning a wide range up to z ∼ 2–3 and fairly sampling the real distribution. Measuring redshifts of fainter sources will indeed need spectroscopy at other wavebands.  相似文献   

13.
We consider a relativistically moving blob consisting of an isotropic electron distribution that Compton-scatters photons from an external isotropic radiation field. We compute the resulting beaming pattern, i.e. the distribution of the scattered photons, in the blob frame as well as in the observer’s frame by using the full Klein–Nishina cross section and the exact incident photon distribution. In the Thomson regime the comparison of our approach with Dermer (1995) results in concurrent characteristics but different absolute number of the scattered photons by a factor of fcorr = 3.09. Additionally, our calculation yields a slightly lower boost factor which varies the more from the corresponding value in Dermer (1995) the higher the spectral index p of the electron distribution gets.  相似文献   

14.
15.
We report on the analysis of two fast CME-driven shocks observed with the UltraViolet Coronagraph Spectrometer (UVCS) on board the Solar and Heliospheric Observatory (SOHO). The first event, detected on 2002 March 22 at 4.1 R with the UVCS slit placed in correspondence with the flank of the expanding CME surface, represents the highest UV detection of a shock obtained so far with the UVCS instrument in the corona. The second one, detected on 2002 July 23 at 1.6 R with the UVCS slit placed in correspondence with the front of the expanding CME surface, shows an anomalous deficiency of ion heating with respect to what observed in previous CME/shocks observed by UVCS, possibly reflecting the effect of different coronal plasma conditions over the solar cycle. From the two different sets of observations we derived an estimate for the shock compression ratio X, which turns out to be X = 2.4 ± 0.2 and X = 2.2 ± 0.1, respectively, for the first and second event. Comparison between the two events provides complementary perspectives on the dynamical evolution of CME-driven shocks.  相似文献   

16.
WSO-UV project     
During last three decades, astronomers have enjoyed continuous access to the 100–300 nm ultraviolet (UV) spectral range where the resonance transitions of the most abundant atoms and ions (at temperatures between 3000 and 300 000 K) reside. This UV range is not accessible from ground-based facilities. The successful International Ultraviolet Explorer (IUE) observatory, the Russian ASTRON mission and successor instruments such as the Galaxy Evolution Explorer (GALEX) mission or the COS and STIS spectrographs on-board the Hubble Space Telescope (HST) prove the major impact of observations in the UV wavelength range in modern astronomy. Future access to space-based observatories is expected to be very limited. For the next decade, the post-HST era, the World Space Observatory – Ultraviolet (WSO–UV) will be the only 2-m class UV telescope with capabilities similar to the HST. WSO–UV will be equipped with instruments for imaging and spectroscopy and it will be a facility dedicated, full-time, to UV astronomy. In this article, we briefly outline the current status of the WSO–UV mission and the science management plan.  相似文献   

17.
The ionospheric total electron content (TEC) in the northern hemispheric equatorial ionospheric anomaly (EIA) region is studied by analyzing dual-frequency signals of the Global Position System (GPS) acquired from a chain of nine observational sites clustered around Taiwan (21.9–26.2°N, 118.4–112.6°E). In this study, we present results from a statistical study of seasonal and geomagnetic effects on the EIA during solar cycle 23: 1994–2003. It is found that TEC at equatorial anomaly crests yield their maximum values during the vernal and autumnal months and their minimum values during the summer (except 1998). Using monthly averaged Ic (magnitude of TEC at the northern anomaly crest), semi-annual variations is seen clearly with two maxima occurring in both spring and autumn. In addition, Ic is found to be greater in winter than in summer. Statistically monthly values of Ic were poorly correlated with the monthly Dst index (r = −0.22) but were well correlated with the solar emission F10.7 index (r = 0.87) for the entire database for the period during 1994–2003. In contrast, monthly values of Ic were correlated better with Dst (r ? 0.72) than with F10.7 (r ? 0.56) in every year during the low solar activity period (1994–1997). It suggests that the effect of solar activity on Ic is a longer term (years), whereas the effect of geomagnetic activity on Ic is a shorter term (months).  相似文献   

18.
The preliminary design of the new space gamma-ray telescope GAMMA-400 for the energy range 100 MeV–3 TeV is presented. The angular resolution of the instrument, 1–2° at Eγ ∼ 100 MeV and ∼0.01° at Eγ > 100 GeV, its energy resolution ∼1% at Eγ > 100 GeV, and the proton rejection factor ∼106 are optimized to address a broad range of science topics, such as search for signatures of dark matter, studies of Galactic and extragalactic gamma-ray sources, Galactic and extragalactic diffuse emission, gamma-ray bursts, as well as high-precision measurements of spectra of cosmic-ray electrons, positrons, and nuclei.  相似文献   

19.
20.
In March of 2009, the ORGANIC experiment integrated into the European multi-user facility EXPOSE-R, containing experiments dedicated to Astrobiology, was mounted through Extra Vehicular Activity (EVA) externally on the International Space Station (ISS). The experiment exposed organic samples of astronomical interest for a duration of 97 weeks (∼22 months) to the space environment. The samples that were returned to Earth in spring 2011, received a total UV radiation dose during their exposure including direct solar irradiation of >2500 h, exceeding the limits of laboratory simulations. We report flight sample preparation and pre-flight ultraviolet–visible (UV–Vis) characterization of the ORGANIC samples, which include 11 polycyclic aromatic hydrocarbons (PAHs) and three fullerenes. The corresponding time-dependent ground control monitoring experiments for ORGANIC measured over ∼19 months are presented and the results anticipated upon return of the samples are discussed. We present the first UV–Vis spectrum of solid circobiphenyl (C38H16). Further, we present the first published UV–Vis spectra of diphenanthro[9,10-b′,10′-d]thiophene (C28H16S), dinaphtho[8,1,2-abc,2′,1′,8′-klm]coronene (C36H16), tetrabenzo[de,no,st,c′d′]heptacene (C42H22), and dibenzo[jk,a′b′]octacene (C40H22) in solid phase and in solution. The results of the ORGANIC experiment are expected to enhance our knowledge of the evolution and degradation of large carbon-containing molecules in space environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号