首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用CHAMP卫星数据,对2002-2008年12个不同强度磁暴事件期间的热层大气密度变化特征进行分析,并研究对应磁暴期间大气模式NRLMSISE-00分布特征.结果表明,大磁暴期间日侧大气密度峰值从高纬到低纬的时间延迟为2h,中小磁暴期间的延迟时间为3~4h;春秋季暴时大气密度分布基本呈南北对称分布,而夏冬季大气密度的分布是夏半球大于冬半球,春秋季暴时大气密度大于夏冬季;NRLMSISE-00大气模式得到的热层大气密度很好的体现了半球分布以及季节分布的特征,但模式模拟结果偏小;Dst指数峰值比ap指数峰值更能反应大气密度的变化情况.   相似文献   

2.
The 15-min averaged polar cap (PC) index was used as an input parameter for the Dst variation forecasting. The PC index is known to describe well the principal features of the solar wind as well as the total energy input to the magnetosphere. This allowed us to design a neural network able to forecast the Dst variations from 1 to 4 h ahead. 1998 PC and Dst data sets were used for training and testing and 1997 data sets was used for validation proposes. From the 15 moderate and strong geomagnetic storms observed during 1997, nine were successfully forecasted. In three cases the observed minimum Dst value was less than the predicted one, and only in three cases the neural network was not able to reproduce the features of the geomagnetic storm.  相似文献   

3.
Severe geomagnetic storms and their effects on the 557.7 nm dayglow emission are studied in mesosphere. This study is primarily based on photochemical model with the necessary input obtained from a combination of experimental observations and empirical models. The model results are presented for a low latitude station Tirunelveli (8.7°N, 77.8°E). The volume emission rates are calculated using MSISE-90 and NRLMSISE-00 neutral atmospheric models. A comparison is made between the results obtained from these two models. A positive correlation amongst volume emission rate (VER), O, O2 number densities and Dst index has been found. The present results indicate that the variation in emission rate is more for MSISE-90 than in NRLMSISE-00 model. The maximum depletion in the VER of greenline dayglow emission is found to be about 30% at 96 km during the main phase of the one of the geomagnetic storms investigated in the case of MSISE-90 (which is strongest with Dst index −216 nT). The O2 density decreases about 22% at 96 km during the main phase of the same geomagnetic storm.The NRLSMSISE-00 model does not show any appreciable change in the number density of O during any of the two events. The present study also shows that the altitude of peak emission rate is unaffected by the geomagnetic storms. The effect of geomagnetic storm on the greenline nightglow emission has also been studied. It is found that almost no correlation can be established between the Dst index and variations in the volume emission rates using the NRLMSISE-00 neutral model atmosphere. However, a positive correlation is found in the case of MSISE-90 and the maximum depletion in the case of nightglow is about 40% for one of the storms. The present study shows that there are significant differences between the results obtained using MSISE-90 and NRLMSISE-00.  相似文献   

4.
地磁暴是空间天气预报的重要对象.在太阳活动周下降年和低年,冕洞发出的高速流经过三天左右行星际传输到达地球并引发的地磁暴占主导地位.目前地磁暴的预报通常依赖于1AU处卫星就位监测的太阳风参数,预报提前量只有1h左右.为了增加地磁暴预报提前量,需要从高速流和地磁暴的源头即太阳出发,建立冕洞特征参数与地磁暴的定量关系.分析了2010年5月到2016年12月的152个冕洞-地磁暴事件,利用SDO/AIA太阳极紫外图像提取了两类冕洞特征参数,分析了其与地磁暴期间ap,Dst和AE三种地磁指数的统计关系,给出冕洞特征参数与地磁暴强度以及发生时间的统计特征,为基于冕洞成像观测提前1~3天预报地磁暴提供了依据.   相似文献   

5.
利用行星际监测数据进行地磁暴预报   总被引:2,自引:0,他引:2  
利用全连接神经网络方法应用于地磁Dst指数的预报中.对ACE卫星探测的太阳风和行星际磁场及其变化对未来几小时的Dst指数的影响进行了统计分析,发现在这些行星际实测参数中,对Dst指数作用较为明显的是太阳风速度、太阳风质子密度和行星际磁场南向分量,同时,当前Dst指数实测值对今后几小时的Dst指数已有很强的制约作用.在统计分析的基础上,建立了全连接神经网络预报模型.由于采用了全连接神经网络结构,模式能够反映出太阳风、行星际磁场等参数与地磁Dst指数参数的复杂联系,可以自动建立输入参量的最佳组合方式,提高了预报精度.通过利用大量实测数据对神经网络模式进行训练,最终建立了利用优选的ACE卫星行星际监测数据提前2 h对Dst指数进行预报.通过检测,预报的误差为14.3%.   相似文献   

6.
利用人工神经网络预报大磁暴   总被引:2,自引:0,他引:2       下载免费PDF全文
本文采用阈值预报的策略和人工神经网络BP模型,以13个太阳风参量和地磁AE,Dst指数作为输入,以0或1作为输出,提前4h预报大磁暴主相发生的时刻.结果表明,采用神经网络方法的阈值预报可以对灾害性磁暴的发生提前数小时做出比较准确的预报.  相似文献   

7.
The responses of the ionospheric F region using GPS–TEC measurements during two moderate geomagnetic storms at equatorial, low-, and mid-latitude regions over the South American and African sectors in May 2010, during the ascending phase of solar cycle 24, are investigated. The first moderate geomagnetic storm studied reached a minimum Dst value of −64 nT at 1500 UT on 02 May 2010 and the second moderate geomagnetic storm reached a minimum Dst value of −85 nT at 1400 UT on 29 May 2010. In this paper, we present vertical total electron content (VTEC) and phase fluctuations (in TECU/min) from Global Positioning System (GPS) observations from the equatorial to mid-latitude regions in the South American and African sectors. Our results obtained during these two moderate geomagnetic storms from both sectors show significant positive ionospheric storms during daytime hours at the equatorial, low-, and mid-latitude regions during the main and recovery phases of the storms. The thermospheric wind circulation change towards the equator is a strong indicator that suggests an important mechanism is responsible for these positive phases at these regions. A pre-storm event that was observed in the African sector from low- to the mid-latitude regions on 01 May 2010 was absent in the South American sector. This study also showed that there was no generation or suppression of ionospheric irregularities by storm events. Therefore, knowledge about the suppression and generation of ionospheric irregularities during moderate geomagnetic storms is still unclear.  相似文献   

8.
本文利用100kHz的低频无线电波资料,计算分析了1986—1987年期间,几种不同磁扰情况下,低纬地区夜间电离层中100km以下区域积分电子浓度及其变化的起因.结果表明:该区域电子浓度的变化与地磁扰动关系密切.在磁静日期间,其值较小,且随磁扰而变化,但比磁扰滞后1到2天.在磁暴后,其值较大,会出现几次剧烈起伏.该区域积分电子浓度的起伏可大于一个量级.沉降电子产生的动致辐射可能是引起该区域电子浓度变化的主要原因之   相似文献   

9.
This study examines the occurrences rate of geomagnetic storms during the solar cycles (SCs) 20–24. It also investigates the solar sources at SCs 23 and 24. The Disturbed storm time (Dst) and Sunspot Number (SSN) data were used in the study. The study establishes that the magnitude of the rate of occurrences of geomagnetic storms is higher (lower) at the descending phases (minimum phases) of solar cycle. It as well reveals that severe and extreme geomagnetic storms (Dst < -250 nT) seldom occur at low solar activity but at very high solar activity and are mostly associated with coronal mass ejections (CMEs) when occurred. Storms caused by CME + CH-HSSW are more prominent during the descending phase than any other phase of the solar cycle. Solar minimum features more CH-HSSW- associated storms than any other phase. It was also revealed that all high intensity geomagnetic storms (strong, severe and extreme) are mostly associated with CMEs. However, CH-HSSW can occasionally generate strong storms during solar minimum. The results have proven that CMEs are the leading cause of geomagnetic storms at the ascending, maximum and the descending phases of the cycles 23 and 24 followed by CME + CH-HSSW. The results from this study indicate that the rate of occurrence of geomagnetic storms could be predicted in SC phases.  相似文献   

10.
11.
Seventeen severe magnetic storms occurred in the period 2000 through 2005. In addition there was a major magnetic storm in March 1989. During each of these storms there was an anomaly in the operation of the system of Signalization, Centralization and Blockage (SCB) in some divisions of the high-latitude (∼58 to 64°N) Russian railways. This anomaly was revealed as false traffic light signals about the occupation of the railways. These signals on the Northern railways appeared exactly during the main phases of the strongest part of the geomagnetic storms characterized by high geomagnetic indices Dst and Kp (Ap). Moreover, the durations of these anomalies coincided with the period of the greatest geomagnetic disturbances in a given event. Geomagnetically induced currents (GICs) during significant strengthening of geomagnetic activity are concluded as the obvious reasons for such kind of anomalies.  相似文献   

12.
The study investigated the effects of intense geomagnetic storms of 2015 on the occurrences of large scale ionospheric irregularities over the African equatorial/low-latitude region. Four major/intense geomagnetic storms of 2015 were analyzed for this study. These storms occurred on 17th March 2015 (?229?nT), 22nd June 2015 (?204?nT), 7th October 2015 (?124?nT), and 20th December 2015 (?170?nT). Total Electron Content (TEC) data obtained from five African Global Navigation Satellite Systems (GNSS) stations, grouped into eastern and western sectors were used to derive the ionospheric irregularities proxy indices, e.g., rate of change of TEC (ROT), ROT index (ROTI) and ROTI daily average (ROTIAVE). These indices were characterized alongside with the disturbance storm time (Dst), the Y component of the Interplanetary Electric Field (IEFy), polar cap (PC) index and the H component of the Earth’s magnetic field from ground-based magnetometers. Irregularities manifested in the form of fluctuations in TEC. Prompt penetration of electric field (PPEF) and disturbance dynamo electric field (DDEF) modulated the behaviour of irregularities during the main and recovery phases of the geomagnetic storms. The effect of electric field over both sectors depends on the local time of southward turning of IMF Bz. Consequently, westward electric field inhibited irregularities during the main phase of March and October 2015 geomagnetic storms, while for the June 2015 storm, eastward electric field triggered weak irregularities over the eastern sector. The effect of electric field on irregularities during December 2015 storm was insignificant. During the recovery phase of the storms, westward DDEF suppressed irregularities.  相似文献   

13.
14.
Over the last years the potential effect that the geomagnetic activity may have on human physiological parameters (such as heart rate, arterial diastolic and systolic pressure) is being widely investigated with irrefutable results. As it is suggested, human health can be affected by solar activity and related geophysical changes. In this study a group of 4018 Slovak aviators was examined from January 1, 1994 to December 31, 2002, covering periods with high solar and geomagnetic activity. Specifically, medical data of mean values of arterial diastolic and systolic blood pressure, which were registered during the medical examinations of the Slovak aviators, were related to daily variations of Dst and Ap geomagnetic indices. All subjects were men (from 18 to 60 years old) in good health. Statistical significance levels (p-values) of the effect of geomagnetic activity on the aforementioned parameters up to three days before and three days after the geomagnetic event were established using the statistical method ANalysis Of VAriance (ANOVA). Statistical analysis of the arterial blood pressure variations for different levels of geomagnetic activity revealed that geomagnetic changes are connected to variations of the human physiological parameters.  相似文献   

15.
16.
In this short paper we examine the possible connection between atmospheric parameters measured at low and middle altitudes and geomagnetic storms occurred in 2000 and 2003. For that, from a chain of stations located near the meridian 60°W we compare the storm time values of temperature and wind speed with their standard deviation 2σ obtained from quiet time values. We observed statistically significant variations at several altitudes during the storm recovery phase and after it, both in neutral wind speed and temperature. The results obtained suggest that atmospheric parameters could be affected by geomagnetic storms.  相似文献   

17.
In our study we analyze and compare the response and behavior of the ionospheric F2 and of the sporadic E-layer during three strong (i.e., Dst?<??100nT) individual geomagnetic storms from years 2012, 2013 and 2015, winter time period. The data was provided by the state-of the art digital ionosonde of the Széchenyi István Geophysical Observatory located at midlatitude, Nagycenk, Hungary (IAGA code: NCK, geomagnetic latitude: 46.17° geomagnetic longitude: 98.85°). The local time of the sudden commencement (SC) was used to characterize the type of the ionospheric storm (after Mendillo and Narvaez, 2010). This way two regular positive phase (RPP) ionospheric storms and one no-positive phase (NPP) storm have been analyzed. In all three cases a significant increase in electron density of the foF2 layer can be observed at dawn/early morning (around 6:00 UT, 07:00 LT). Also we can observe the fade-out of the ionospheric layers at night during the geomagnetically disturbed time periods. Our results suggest that the fade-out effect is not connected to the occurrence of the sporadic E-layers.  相似文献   

18.
利用宇宙线中子探测数据定性分析了地面宇宙线多台站之间的相互联系以及大磁暴与宇宙线之间的响应关系. 以Irkutsk和Oulu宇宙线台站为例, 运用小波去噪技术提高数据的稳定性. 结果表明, 相同世界时条件下, 两站宇宙线通量相关性在事件发生时较高; 而相同地方时条件下, 相关性则在平静期较高. 进一步采用相同地方时条件对不同宇宙线台站的通量在平静期和扰动期的相对变化进行分析, 选取2004年7月强地磁暴典型事例进行直观分析, 发现大地磁暴前Irkutsk和Oulu台站的宇宙线相对通量发生明显差异, 可以尝试作为强地磁暴宇宙线先兆特征. 通过对2001年3月至2005年5月的强磁暴和中强磁暴进行统计, 得到与强地磁暴相关的适当宇宙线相对差异阈值. 将得到的阈值对2005年9月至2011年12月所有强磁暴及中强磁暴进行验证, 总成功率达到87.5%, 误报率为35.7%, 结果较好.   相似文献   

19.
利用支持向量机(SVM)模型对大磁暴期间Dst指数进行预报研究.以1995-2014年期间的80次大磁暴(Dst≤-100nT)事件共2662组观测数据为研究对象,以对应时间的太阳风参数为模型输入参数,同时建立了神经网络模型和线性机模型进行对比,并利用交叉验证提高预测结果的可靠性.为比较不同模型的预测效果,选用相关系数(CC)、均方根误差(RMS)、磁暴期间Dst指数最小值预测结果的平均绝对误差以及Dst指数最小值出现时间预测结果的平均绝对误差等统计量作为对比参数.结果显示SVM模型的预测效果最好,其中相关系数为0.89,均方根误差为24.27nT,所有磁暴事件的最小Dst值预测平均绝对误差为17.35nT,最小Dst值出现时间的预测平均绝对误差为3.2h.为进一步检验模型对不同活动水平磁暴预报效果的可能差异,将所有磁暴事件分为大磁暴(-200 相似文献   

20.
2005年8月24日强磁暴事件对高层大气密度的扰动   总被引:6,自引:1,他引:5  
对2005年8月24日发生的突发型强磁暴(Kp峰值达到9)事件,利用星载大气密度探测器在轨实时的连续探测数据进行了处理和分析.结果表明,此次强磁暴事件期间,引起560 km高度附近大气密度剧烈扰动,并存在着两种响应过程.一种是跟随地磁扰动程度变化的全球性大气密度涨落变化,响应时间滞后6h左右, 最大涨落变化比为2.5;另一种为磁暴峰期出现在高纬地区的大气密度突发性跃增,增变比高达5.5.后者存在着区域上的不对称性及时间上的突发性和增幅的差异.此次强磁暴峰期还同时出现了南北半球高纬地区的大气密度跃增双峰.同时还表明这种增变峰可能存在着由高纬向低纬地区迅速推移的现象,在中纬地区推移速度可达15°/h(纬度)左右.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号