首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 583 毫秒
1.
2.
To explore the proteomic changes of heritable variant rice plants induced by space environment, three mutants were selected after seed space flight by comparing the phenotypes with their on-ground controls. R955 grew more tillers and became dwarf, 971-5 acquired higher grain yield and better stress resistance, 974-5 matured earlier. Leaf proteins were extracted during the tiller development and analyzed by two-dimensional polyacrylamide gel electrophoresis (2-D PAGE). More than 300 proteins were detected as reproducible Coomassie Brilliant Blue stained spots with pI values from around 4.0 to 7.0. Five proteins that changed significantly over the controls were identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). The main functions of these proteins were photosynthesis, stress defense and metabolism including RuBisCO activase, glycine rich RNA binding protein, peroxidase, triosephosphate isomerase and phosphoenolpyruvate carboxylase, which might be probably associated with the altered phenotypes. Quantitative analyses were also applied: less total protein spots and more down-regulated protein spots were detected in the mutants, indicating there might be a major loss of protein in heritable variant rice plants after seed space flight. These results may provide new insights to understand the biological effects of space environment to rice.  相似文献   

3.
4.
5.
Addition of calcium lactate and vitamin C, a mild heating, deep-freezing, and gamma irradiation at 25 kGy were conducted to prepare Kimchi as a ready-to-eat space food. It was confirmed that the space food was sterilized by an irradiation at 25 kGy through incubation at 37 °C for 30 days. The hardness of the Space Kimchi (SK) was lower than the untreated Kimchi (CON), but higher than the irradiated Kimchi (IR). Also, this result was supported by the scanning electron microscopic observation. Sensory attributes of the SK were similar to CON, and maintained during preservation at 35 °C for 30 days. According to the Ames test, Kimchi sterilized with a high-dose irradiation exerted no mutagenic activity in the bacterial strains of Salmonella typhimurium. And, the SK was certificated for use in space flight conditions during 30 days by the Russian Institute of Biomedical Problems.  相似文献   

6.
The purpose of this paper is to review the potential functional and morphological effects of long duration space flight on the human central nervous system (CNS) and how current neuroimaging techniques may be utilized to study these effects. It must be determined if there will be any detrimental changes to the CNS from long term exposure to the space environment if human beings are to plan interplanetary missions or establish permanent space habitats. Research to date has focused primarily on the short term changes in the CNS as the result of space flight. The space environment has many factors such as weightlessness, electromagnetic fields, and radiation, that may impact upon the function and structure of the CNS. CNS changes known to occur during and after long term space flight include neurovestibular disturbances, cephalic fluid shifts, alterations in sensory perception, changes in proprioception, psychological disturbances, and cognitive changes. Animal studies have shown altered plasticity of the neural cytoarchitecture, decreased neuronal metabolism in the hypothalamus, and changes in neurotransmitter concentrations. Recent progress in the ability to study brain morphology, cerebral metabolism, and neurochemistry in vivo in the human brain would provide ample opportunity to investigate many of the changes that occur in the CNS as a result of space flight. These methods include positron emission tomography (PET), single photon emission computed tomography (SPECT), and magnetic resonance imaging (MRI).  相似文献   

7.
Space flight results in the exposure of astronauts to a mixed field of radiation composed of energetic particles of varying energies, and biological indicators of space radiation exposure provides a better understanding of the associated long-term health risks. Current methods of biodosimetry have employed the use of cytogenetic analysis for biodosimetry, and more recently the advent of technological progression has led to advanced research in the use of genomic and proteomic expression profiling to simultaneously assess biomarkers of radiation exposure. We describe here the technical advantages of the Luminex(TM) 100 system relative to traditional methods and its potential as a tool to simultaneously profile multiple proteins induced by ionizing radiation. The development of such a bioassay would provide more relevant post-translational dynamics of stress response and will impart important implications in the advancement of space and other radiation contact monitoring.  相似文献   

8.
长期空间飞行过程中航天员处于狭小密闭的失重环境中,密闭环境对机体骨代谢与糖脂代谢的影响尚不明确.通过4人180天受控生态生保系统集成实验,分析长期处于密闭环境的4名志愿者血清中骨代谢、糖脂代谢指标变化,并根据骨与能量代谢相互调控理论,分析二者相关性.实验结果表明,长期密闭舱内生活影响了骨代谢与糖脂代谢,表现为骨形成指标(BGP,PICP,BAP)的下降趋势.入舱前中后期Insulin的变化幅度较大.脂代谢类指标也有下降趋势.相关性分析表明BGP与FRUC呈极显著的正相关(r=0.525,p=0.001);BGP与CHOL和LDL也呈显著正相关(r=0.376,p=0.024;r=0.391,p=0.018).长期密闭环境影响机体的骨代谢与糖脂代谢,且二者存在一定关联.   相似文献   

9.
10.
This paper reviews the medical operations performed on six European astronauts during seven space missions on board the space station Mir. These missions took place between November 1988 and August 1999, and their duration ranged from 14 days to 189 days. Steps of pre-flight medical selection and flight certification are presented. Countermeasures program used during the flight, as well as rehabilitation program following short and long-duration missions are described. Also reviewed are medical problems encountered during the flight, post-flight physiological changes such as orthostatic intolerance, exercise capacity, blood composition, muscle atrophy, bone density, and radiation exposure.  相似文献   

11.
This paper reviews data available from U.S. and U.S.S.R. studies on energy metabolism in the microgravity of space flight. Energy utilization and energy availability in space seem to be similar to those on Earth. However, negative nitrogen balances in space in the presence of adequate energy and protein intakes and in-flight exercise, suggest that lean body mass decreases in space. Metabolic studies during simulated (bed rest) and actual microgravity have shown changes in blood glucose, fatty acids, and insulin levels, suggesting that energy metabolism may be altered during flight. Future research should focus on the interactions of lean body mass, diet, and exercise in space and their roles in energy metabolism during space flight.  相似文献   

12.
Cell metabolism, secretion and cell-cell interactions can be altered during space flight. Early radiobiology experiments have demonstrated synergistic effects of radiation and microgravity as indicated by increased mutagenesis, increased chromosome aberrations, inhibited development, and retarded growth. Microgravity-induced changes in immune cell functions include reduced blastogenesis and cell-mediated, delayed-type hypersensitivity responses, increased cytokine secretions, but inhibited cytotoxic effects and macrophage differentiation. These effects are important because of the high radiosensitivity of immune cells. It is difficult to compare ground studies with space radiation biology experiments because of the complexity of the space radiation environment, types of radiation damage and repair mechanisms. Altered intracellular functions and molecular mechanisms must be considered in the design and interpretation of space radiation experiments. Critical steps in radiocarcinogenesis could be affected. New cell systems and hardware are needed to determine the biological effectiveness of the low dose rate, isotropic, multispectral space radiation and the potential usefulness of radioprotectants during space flight.  相似文献   

13.
There are few human data on low-dose-rate-radiation exposure and the consequent acute and late effects. This fact makes it difficult to assess health risks due to radiation in the space environment, especially for long-term missions. Epidemiological data on civilian flight personnel cohorts can provide information on effects due to the low-dose and low-dose rate mixed high- and low-LET radiation environment in the earth's atmosphere. The physical characteristics of the radiation environment of the atmosphere make the results of the studies of commercial flight personnel relevant to the studies of activities in space. The cooperative international effort now in progress to investigate dose reconstructions will contribute to our understanding of radiation risks for space exploration.  相似文献   

14.
The purpose of the present study was to analyze and predict the changes in acceleration tolerance of human vertebra as a result of bone loss caused by long-term space flight. A human L3–L4 vertebra FEM model was constructed, in which the cancellous bone was separated, and surrounding ligaments were also taken into account. The simulation results demonstrated that bone loss has more of an effect on the acceleration tolerance in x-direction. The results serve to aid in the creation of new acceleration tolerance standards, ensuring astronauts return home safely after long-term space flight. This study shows that more attention should be focused on the bone degradation of crew members and to create new protective designs for space capsules in the future.  相似文献   

15.
The higher plant Wolffia arrhiza is regarded to be well suited concerning the provision of photosynthetic products in the cycle of matter of a Controlled Ecological Life Support System (CELSS) to be established in the context of extraterrestrial, human-based colonization and long-term space flight. Since UV radiation is one major extraterrestrial environmental stress for growth of any plant, effects of UV-B radiation on W. arrhiza were assessed in the present study. We found that UV-B radiation significantly inhibited photosynthetic CO2 assimilation activity, and the contents of chlorophyll a, chlorophyll b (Chl a, Chl b) and carotenoids considerably decreased when plants were exposed to UV-B radiation for 12 h. High UV-B radiation also declined the quantum yield of primary photochemistry (φpo), the quantum yield for electron transport (φEo) and the efficiency per trapped excitation (Ψo) in W. arrhiza simultaneously, while the amount of active PSII reaction centers per excited cross section (RC/CS) and the total number of active reaction centers per absorption (RC/ABS) had comparative changes. These results indicate that the effects of UV-B radiation on photosynthesis of W. arrhiza is due to an inhibition of the electron transport and via inactivation of reaction centers, but the inhibition may take place at more than one site in the photosynthetic apparatus.  相似文献   

16.
Space flight, microgravity, stress, and immune responses.   总被引:4,自引:0,他引:4  
Exposure of animals and humans to space flight conditions has resulted in numerous alterations in immunological parameters. Decreases in lymphocyte blastogenesis, cytokine production, and natural killer cell activity have all been reported after space flight. Alterations in leukocyte subset distribution have also been reported after flight of humans and animals in space. The relative contribution of microgravity conditions and stress to the observed results has not been established. Antiorthostatic, hypokinetic, hypodynamic, suspension of rodents and chronic head-down tilt bed-rest of humans have been used to model effects of microgravity on immune responses. After use of these models, some effects of space flight on immune responses, such as decreases in cytokine function, were observed, but others, such as alterations in leukocyte subset distribution, were not observed. These results suggest that stresses that occur during space flight could combine with microgravity conditions in inducing the changes seen in immune responses after space flight. The biological/biomedical significance of space flight induced changes in immune parameters remains to be established. Grant Numbers: NCC2-859, NAG2-933.  相似文献   

17.
The health condition and work capacity of space travellers during many flights remained adequate. Medical examinations performed during and after space flights consistently revealed the following symptom-complexes: space motion sickness, changes in the muscles system, hemodynamics, fluid-electrolyte balance and its regulation, calcium metabolism and bone density, transient erythrocytopenia and immunity decline. This paper presents a detailed discussion of the changes observed in space flight.  相似文献   

18.
19.
啮齿动物是空间研究中常见的模型对象,已开展的空间生物实验中,小鼠表现出对飞行条件的有效适应.通过空间培养,研究者可对失重环境下小鼠的生理行为、骨骼和神经系统变化做进一步研究分析.本文对空间小鼠实验有效载荷的研究进展及其空间飞行实验进行了概述,为中国空间站上的小鼠培养箱设计提供参考.概述了地面小鼠培养技术和装置,为空间小鼠实验有效载荷设计提供地面对照;从实验研究内容和硬件系统设计两方面介绍了国际上已开展的空间小鼠实验,为中国空间生命科学研究和工程研制提供参考;对于中国发展空间小鼠实验有效载荷提出了建议.   相似文献   

20.
The human exploration of space is one of the great voyages of discovery in human history. For over forty years space exploration, human have gotten more profound knowledge about outer space and life phenomena, ranging from understanding and recognizing space to adapting and utilizing space. With these development, space medicine that aimed at studying effect of space environment on human health and ensuring the safety, health and effective working of human in space exploration, will become increasingly improved and matured.The contents of research will develop from the early phenomena observation of the effect of space environment on human physiology and biochemistry, and the effect definition, to the study of the mechanism of changes of cell, molecule, and gene, from the passive adaptation for space environment to taking the initiative countermeasures, in order to ensure the safety, health and effective working of astronauts during space flight.Space practices in the past forty years have confirmed that a variety of physiological and pathological changes have been found for organism exposed to space flight. These changes include cardiovascular dysfunction, bone loss,muscle atrophy, decline of immune function, endocrine function disorder and space motion sickness. In recent years, more attention has been focused on the study of the mechanism of these changes, especially the effects of space environment on cell, molecule and its gene expression. With the demand of China's manned space engineering task and continuous development, a series of studies on medical problem caused by space environment have been carried out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号