首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The concept of the Global Electric Circuit (GEC) provides an explanation of the existence of a vertical atmospheric electric field and coupling between the ground and ionosphere. Presently, ionospheric physics pays more attention to electric fields and coupling processes in the polar and auroral regions, whereas in other areas the potential difference between the ground and ionosphere usually is not taken into account. Regional processes exist, however, that are able to significantly affect the GEC parameters and through modification of the ionospheric potential to create plasma density irregularities of different scales within the ionosphere. One such source of ionosphere modification is air ionization in the vicinity of active tectonic faults, which takes place due to increased radon emanation. This paper considers the process of local modification of the GEC and corresponding ionospheric variability due to tectonic activity.  相似文献   

2.
The downward field-aligned current region plays an active role in magnetosphere–ionosphere coupling processes associated with aurora. A quasi-static electric field structure with a downward parallel electric field forms at altitudes between 800 km and 5000 km, accelerating ionospheric electrons upward, away from the auroral ionosphere. Other phenomena including energetic ion conics, electron solitary waves, low-frequency wave activity, and plasma density cavities occur in this region, which also acts as a source region for VLF saucers. Results are presented from high-altitude Cluster observations with particular emphasis on the characteristics and dynamics of quasi-static electric field structures. These, extending up to altitudes of at least 4–5 Earth radii, appear commonly as monopolar or bipolar electric fields. The former occur at sharp boundaries, such as the polar cap boundary whereas the bipolar fields occur at softer boundaries within the plasma sheet. The temporal evolution of quasi-static electric field structures, as captured by the pearls-on-a-string configuration of the Cluster spacecraft, indicates that the formation of electric field structures and of ionospheric plasma density cavities are closely coupled processes. A related feature of the downward current is a broadening of the current sheet with time, possibly related to the depletion process. Preliminary studies of the coupling of electric fields in the downward current region, show that small-scale structures are typically decoupled from the ionosphere, similar to what has been found for the upward current region. However, exceptions are also found where small-scale electric fields couple perfectly between the ionosphere and Cluster altitudes. Recent FAST results indicate that the degree of coupling differs between sheet-like and curved structures, and that it is typically partial. The electric field coupling further depends on the current–voltage relationship, which is highly non-linear in the downward current region, and still unrevealed, as to its specific form.  相似文献   

3.
In this national biannual report, we will outline some recent progresses in ionospheric studies conducted by Chinese scientists since 2012. The mentioned aspects include: the solar activity control of the ionosphere; couplings between the ionosphere, lower atmosphere and plasmasphere;ionospheric climatology and disturbances; ionospheric irregularities and scintillation; models, data assimilation and simulations; unusual phenomena of the ionosphere; possible seismic signatures presented in ionospheric observations, and some methodology progresses. These progresses will enhance our ability to observe the ionosphere, provide more reasonable understanding about the states of the ionosphere and underlying fundamental processes, and stimulate ionospheric modeling, forecasting and related applications.  相似文献   

4.
On December 11, 1967 at 05:21 LT, an immense earthquake of magnitude 6.7 struck Koyna, the Indian province of Maharashtra. Its epicenter was located at geographic latitude 17.37°N and longitude 73.75°E with depth of about 3 km. Ground based measurements show variation in the critical frequency of ionospheric F2 layer (foF2) before and after the shock. In the present study the behavior of F2-region of ionosphere has been examined over the equatorial and low latitudinal region ionosphere during the month of December 1967 around the time of Koyna earthquake. For this purpose, the ionospheric data collected with the help of ground-based ionosondes installed at Hyderabad (located close to the earthquake epicenter) Ahmedabad, Trichirapulli, Kodaikanal and Trivendrum have been utilized. The upper and lower bound of Interquartile range (IRQ) are constructed to monitor the variations in foF2 other than day-to-day and diurnal pattern for finding the seismo-ionospheric precursors. Some anomalous electron density variations are observed between post midnight hours to local pre-noon hours at each station. These anomalies are strongly time dependent and appeared a couple of days before the main shock. The period considered in this study comes under the quiet geomagnetic conditions. Hence, the observed anomalies (which are more than the usual day-to-day variability) over all stations are likely to be associated with this imminent earthquake. The possible mechanism to explain these anomalies is the effect of seismogenic electric field generated just above the surface of earth within the earthquake preparation zone well before the earthquake due to emission of radioactive particles and then propagated upward, which perturbs the F-region ionosphere.  相似文献   

5.
The article presents the results of the observation of a strong magnetic storm and two X-ray flares during the summer solstice in 2015, and their impact on the HF signals characteristics in ionospheric oblique sounding. It was found that the negative phase of the magnetic storm led to a strong degradation of the ionospheric channel, ultimately causing a long blackout on paths adjacent to subauroral latitudes. On mid-latitude paths, the decrease in 1FMOF reached ~50% relative to the average values for the quiet ionosphere. It is shown that the propagation conditions via the sporadic Es layer during the magnetic storm on a subauroral path are substantially better than those for F-mode propagation via the upper ionosphere. The delay of the sharp decrease in 1FMOF during the main phase of the magnetic storm allowed us to determine the propagation velocity of the negative phase disturbances (~100 m/s) from subauroral to mid-latitude ionosphere along two paths: Lovozero – Yoshkar-Ola and Cyprus – Nizhny Novgorod. It is shown that both the LOF and the signal/noise ratio averaged over the frequency band corresponding to the propagation mode via the sporadic Es layer correlate well with the auroral AE index. Using an over-the-horizon chirp radar with a bistatic configuration on the Cyprus – Rostov-on-Don path, we located small-scale scattering irregularities responsible for abnormal signals in the region of the equatorial boundary of the auroral oval.  相似文献   

6.
利用武汉电离层观象台研制的GPS TEC的现报方法及现报系统,对东亚地区GPS台网的观测数据进行处理分析,特别对2000年7月14-18日和2003年10月28日至11月1日两次特大磁暴期间的数据进行了对比考察,文中分析了两次磁暴间的电离层响应,得到对应不同磁暴时段电离层TEC的不同变化情况,着重揭示了TEC赤道异常峰的压缩和移动以及赤道异常随时间的压缩—反弹—恢复的过程,并结合高纬电离层的部分响应机制进行了说明,结果显示,两次磁暴期的电离层响应表现出了各自不同的特点,从而反映出因季节变化引起的高纬电离层暴时能量注入的不同而造成的全球性电离层扰动的不同形态,由此看出,磁暴期间电离层TEC的变化直接与太阳扰动发生的时间及其对高纬电离层的耦合有关,若短时期内连续发生多次磁暴,则电离层反应更加复杂,不能简单地当做单一磁暴叠加处理。  相似文献   

7.
ULF/ELF electric field perturbations in the ionosphere have been widely observed by the satellites. In this paper, we develop a method of Logarithm Electric Field Intensity (LEFI) to automatically distinguish this kind of disturbances based on the spectrum intensity and its damping exponent with frequency in electromagnetic signals. This method is applied to DEMETER data processing around Chile earthquakes with magnitude larger than 6.0. It is found that 2/3 earthquakes have shown obvious ULF/ELF electric field perturbations in this region. The temporal and spatial distributions of electron density and temperature were compared with that of electric field, which proved the existence of irregularities above epicentral area. Finally, the coupling mechanism of earthquake-ionosphere is discussed based on multi-parameter analysis.  相似文献   

8.
This brief report reviews the recent developments in ionospheric physics studies made by Chinese scientists. It covers areas from the numerical simulations and theoretical researches on ionospheric properties, ionospheric disturbances, space weather events in the ionosphere to ionospheric obserwtions.  相似文献   

9.
The Global Electron Content, GEC, represents the total number of electrons in the spherical layer over the Earth restricted by orbit of Global Positioning Satellite system (20,200 km). GEC is produced from Global Ionospheric Map of Total Electron Content, GIM-TEC, transformed to the electron density varying with height using the International Reference Ionosphere and Plasmasphere model, IRI-Plas. The climatologic GEC model is developed from GIM-TEC maps for a period 1999–2012 including the solar activity, annual and semiannual cycles as the most important factors affecting daily GEC variation. The proxy Rzp of the international sunspot numbers, Ri, is used as a measure of solar activity composed of 3 day smoothed Ri, 7 day and 81 day backwards mean of Ri scaled to the range of 1–40 proxy units, p.u. The root mean square error of the GEC climatologic model is found to vary from 8% to 13% of GEC. Taking advantage of a long history of sunspot numbers, the climatologic GEC model is applied for GEC reconstruction backwards in time for more than 160 years ago since 1850. The extended set of GEC values provides the numerical representation of the ionosphere and plasmasphere electron content coherent with variations of solar activity as a potential proxy index driving the ionosphere models.  相似文献   

10.
The ground-based and satellite DC-ULF electric field data were analyzed around Wenchuan M8.0 earthquake on May 12, 2008 in China. The results show that ground electric field anomalies occurred at 3 stations located to the north and south of the epicenter with the amplitude of 3–100 mV/km. The change shapes and their amplitude of ground electric field anomalies are different largely due to their individual underground layer conductivity, water level and so on. The analysis of long time series illustrates that the abnormal geoelectric field started since March 2008. Onboard the DEMETER satellite, the ULF waveforms of electric field were collected and processed by wavelet transform method. The disturbances in the ionosphere were about 3–5 mV/m at a frequency band lower than 0.5 Hz. When the ground and space electric field anomalies were compared, their occurrence time and spatial distribution points are consistent with each other, including the long time anomalies from March 2008 and the short term ones 1–2 days before the Wenchuan earthquake. Finally, the coupling mechanism was discussed.  相似文献   

11.
The measurements of GPS signal delays show that the local areas of increased/decreased Total Electron Content (TEC) of the ionosphere can be observed before strong earthquakes. The main possible cause of these TEC disturbances is the vertical plasma drift under the action of zonal electric field. The spatial pattern of electric potentials for such electric field was proposed. The model calculations were done to investigate the efficiency of the proposed mechanism. The calculation results revealed the agreement with TEC variations observed before strong earthquakes and showed that the equatorial electrojet variations can be considered as precursors of earthquakes.  相似文献   

12.
One of various mechanisms of pre-earthquake lithosphere–atmosphere–ionosphere coupling as possible explanation of the seismo-ionospheric effects is connected with the release of latent heat. Abnormal variations of ionospheric electromagnetic parameters possibly related to the 2007 Ms 6.4 Pu’er earthquake in China were reported. This paper attempts to examine whether there were abnormal changes of surface latent heat flux (SLHF) linked with this pre-earthquake ionospheric disturbances. The spatio-temporal statistical analyzes of multi-years SLHF data from USA NCEP/NCAR Reanalysis Project reveal that local SLHF enhancements appeared 11, 10 and 7 days before the Pu’er earthquake, respectively. As contrasted to the formerly reported local ionospheric Ne enhancement 9 days before the shock observed by DEMETER satellite, it is discovered that the SLHF and Ne anomalies are quasi-synchronous and have good spatial correspondence with the epicentre and the local active faults. This is valuable for understanding the seismogenic coupling processes and for recognizing earthquake anomaly with multiple parameters from integrated Earth observation system.  相似文献   

13.
It is well known that the ionosphere affects radio wave propagation especially in the high frequency (HF) range. HF radio waves reflected by the ionosphere can reach considerable distances, often with changes in amplitude, phase, and frequency. The ionosphere is a dispersive in frequency and time, bi-refractive, absorbing medium, in which multipath propagation due to traveling irregularities is very frequent. The traveling irregularities undulate the reflecting ionospheric layer, introducing variations in signal amplitude (fading). In this multipath time variant channel fading is mainly considered, even though it is not the sole effect. Echo signals from a single reflection, as in ionospheric vertical sounding (VIS) techniques, are affected by a certain degree of variability even in quiet ionospheric conditions. In this work the behavior of the ionospheric channel is studied and characterized by observing the power variation of received echoes using the VIS technique. Multipath fading was analyzed quantifying the power variation of the signal echo due to irregularities on a temporal scale from 0.5 to 256 s. An experimental set-up derived from an ionosonde was implemented and the analysis was performed employing a special numerical algorithm operating off-line on the acquired time sequence of the signal. The gain-loss of the irregularity shapes are determined in some special cases.  相似文献   

14.
This paper presents simulated results of the ionospheric behavior during few geomagnetic storms,which were occurred in the different seasons. The numerical model for ionosphere-plasmasphere coupling was used to interpret the observed variation of ionosphere structure. Reasons why the positive storms are dominant in the winter whereas the negative ones are dominant in the summer season present the special interest for the mid-latitude ionosphere. A theoretical analysis of the processes controlling the ionospheric response to the geomagnetic storms has showed a good agreement between the simulated results and measurements, as well as the crucial role of the neutral composition variations to fit the calculated and the observed ionospheric parameters.   相似文献   

15.
Besides gravitational effects, interesting electrodynamical processes could also take place in the vicinity of the rings of Saturn. In part, this is because of the electrostatic charging of the ring particles by the magnetospheric and ionospheric plasma, and in part, the generation of impact plasma by meteoroid bombardment at the ring plane could lead to strong coupling between the rings and the ionosphere via a variety of current systems. The mass transport and angular momentum transfer in association with the ring-ionosphere coupling may cause quite large changes in the ring configuration over the age of the solar system. The presence of the sharp boundary between the B and the C rings perhaps is a good example. To highlight these new developments, we describe several of the electrodynamical mechanisms (with emphasis on their corresponding electric fields and current systems) which have been postulated to be of importance in determining the mass transport of the ring system. Further points are made that, besides mass exchange between the rings and the planetary atmosphere, the mass injection from the rings could also have significant effect on the mass and energy budget of the magnetosphere, maintenance of the E ring, the Titan hydrogen torus as well as aeronomic process in the upper atmosphere of Titan.  相似文献   

16.
Ionospheric disturbances associated with solar activity may occur via two basic mechanisms. The first is related to the direct impact on the ionosphere of EUV photons from a flare, and the second by prompt electric field penetration into the magnetosphere during geomagnetic storms. In this paper we examine the possibility that these two mechanisms may have an impact at mid latitudes by calculating the total electron content (TEC) from GPS stations in Mexico during several large X-ray flares. We have found that indeed large, complex flares, which are well located, may affect the mid latitude ionosphere. In fact, in the solar events of July 14, 2000 and April 2001 storms, ionospheric disturbances were observed to increase up to 138 and 150 TECu, respectively, due to the influence of EUV photons. Also, during the solar events of July 2000, April 2001, Halloween 2003, January 2005 and December 2006, there are large ionospheric disturbances (up to 393 TECu in the Halloween Storms), due to prompt penetration electric field, associated with CME producing geomagnetic storm.  相似文献   

17.
对流层特大暴雨天气对电离层变化的影响   总被引:3,自引:2,他引:3  
研究气象活动对电离层变化的影响.利用时序叠加方法,通过对1958-1998年期间发生在武汉的5次特大暴雨天气事件对武汉上空电离层变化的影响进行分析,发现:(1)特大暴雨能够引起低电离层,fbEs和,f0Es参量较明显地减小;(2)特大暴雨对电离层F区寻常波描迹的最低虚高h′F和电离层等效峰高hpF的参量也有一定影响,且随着雨量的增大这种影响作用也会增加;(3)特大暴雨对电离层其他参量影响甚弱或没有影响.本文认为,特大暴雨天气事件对电离层的影响主要来自于动力过程,特别是特大暴雨激发的或相伴的大气重力波、潮汐波和行星波等长周期大尺度过程的作用.  相似文献   

18.
It is well known that the solar wind can significantly affect high-latitude ionospheric dynamics. However, the effects of the solar wind on the middle- and low-latitude ionosphere are much less studied. In this paper, we report observations that large perturbations in the middle- and low-latitude ionosphere are well correlated with solar wind variations. In one event, a significant (20–30%) decrease of the midlatitude ionospheric electron density over a large latitudinal range was related to a sudden drop in the solar wind pressure and a northward turning of the interplanetary magnetic field, and the density decrease became larger at lower latitudes. In another event, periodic perturbations in the dayside equatorial ionospheric E × B drift and electrojet were closely associated with variations in the interplanetary electric field. Since the solar wind is always changing with time, it can be a very important and common source of ionospheric perturbations at middle- and low-latitudes. The relationship between solar wind variations and significant ionospheric perturbations has important applications in space weather.  相似文献   

19.
We present the spatial maps of the ionosphere–plasmasphere slab thickness τ (ratio of the vertical total electron content, TEC, to the F-region peak electron density, NmF2) during the intense ionospheric storms of October–November 2003. The model-assisted technology for estimate of the upper boundary of the ionosphere, hup, from the slab thickness components in the bottomside and topside ionosphere – eliminating the plasmasphere contribution of τ – is applied at latitudes 35° to 70°N and longitudes −10° to 40°E, from the data of 20 observatories of GPS-TEC and ionosonde networks, for selected days and hours of October and November 2003. The daily–hourly values of NmF2, hmF2 and TECgps are used as the constrained parameters for the International Reference Ionosphere extended to the plasmasphere, IRI-Plas, during the ionospheric quiet days, positive and negative storm phases for estimate of τ and hup. Good correlation has been found between the slab thickness and the upper boundary of the ionosphere for the intense ionospheric storms at October–November 2003. During the negative phase of the ionospheric storm, when the ionospheric plasma density is exhausted, the nighttime upper boundary of the ionosphere is greatly uplifted towards the magnetosphere tail, while the daytime upper boundary of the ionosphere is reduced below 500 km over the Earth.  相似文献   

20.
The aim of this paper is to investigate processes in the magnetosphere and in particular the problems of the interaction of the solar wind with the Earth's magnetic field to produce large-scale convection, electric fields and longitudinal currents in the magnetosphere. The investigation is carried out in the frame of magnetic hydrodynamics. The reason for such an approach can be found in /1/. When calculating the transfer coefficients, the Böhm approximation is used, i.e. it is considered that the plasma in the near-equatorial part of the magnetosphere (quasiplanar geometry is used in the problem for simplification) is sufficiently turbulent that the condition ωτ ≈ 1 is valid (ω is the Larmor frequency of electrons, τ is effective time between two Quasi-collisions). The main subjects of investigation in this paper are the input near the equatorial boundary layer and the plasma layer of the magnetosphere tail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号