首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The composition of cosmic rays and solar particles is reviewed with emphasis on the question of whether they are representative samples of Galactic and solar matter. The composition of solar particles changes with energy and from flare to flare. A strong excess of heavy elements at energies below a few MeV/nuc decreases with energy, and at energies above 15 MeV/nuc the composition of solar particles resembles that of galactic cosmic rays somewhat better than that of the solar atmosphere. The elements Ne through Pb have remarkably similar abundances in cosmic ray sources and in the matter of the solar system. The lighter elements are depleted in cosmic rays, whereas U and Th may be enriched or not, depending on whether the meteoritic or solar abundance of Th is used. Two prototype sources of cosmic rays are considered: gas with solar system composition but enriched in elements with Z > 8 during acceleration and emission (by analogy with solar particle emission), and highly evolved matter enriched in r-process elements such as U, Th and transuranic elements. The energy-dependence of cosmic ray composition suggests that both sources may contribute at different energies.Miller Institute Professor, 1972–73.  相似文献   

2.
Cosmic Rays,Clouds, and Climate   总被引:5,自引:0,他引:5  
Marsh  Nigel  Svensmark  Henrik 《Space Science Reviews》2000,94(1-2):215-230
A correlation between a global average of low cloud cover and the flux of cosmic rays incident in the atmosphere has been observed during the last solar cycle. The ionising potential of Earth bound cosmic rays are modulated by the state of the heliosphere, while clouds play an important role in the Earth's radiation budget through trapping outgoing radiation and reflecting incoming radiation. If a physical link between these two features can be established, it would provide a mechanism linking solar activity and Earth's climate. Recent satellite observations have further revealed a correlation between cosmic ray flux and low cloud top temperature. The temperature of a cloud depends on the radiation properties determined by its droplet distribution. Low clouds are warm (>273K) and therefore consist of liquid water droplets. At typical atmospheric supersaturations (1%) a liquid cloud drop will only form in the presence of an aerosol, which acts as a condensation site. The droplet distribution of a cloud will then depend on the number of aerosols activated as cloud condensation nuclei (CCN) and the level of super saturation. Based on observational evidence it is argued that a mechanism to explain the cosmic ray-cloud link might be found through the role of atmospheric ionisation in aerosol production and/or growth. Observations of local aerosol increases in low cloud due to ship exhaust indicate that a small perturbation in atmospheric aerosol can have a major impact on low cloud radiative properties. Thus, a moderate influence on atmospheric aerosol distributions from cosmic ray ionisation would have a strong influence on the Earth's radiation budget. Historical evidence over the past 1000 years indicates that changes in climate have occurred in accord with variability in cosmic ray intensities. Such changes are in agreement with the sign of cloud radiative forcing associated with cosmic ray variability as estimated from satellite observations.  相似文献   

3.
In this review the present state of our knowledge on the properties of heavy ions in low energy cosmic rays measured in the Skylab mission and in other spacecrafts is summarised and the possible mechanisms of their origin are discussed. A brief review of the general features of the galactic and solar cosmic rays is given in order to understand the special features of the low energy heavy ions of cosmic rays. The results of the cosmic ray experiment in the Skylab show that in the low energy interval of 8–30 MeV/N, the abundances of oxygen, nitrogen, and neon ions, relative to carbon are enhanced by a factor of 5 to 2 as compared to high energy cosmic rays; while Mg, Si, S, and A are depleted. In 50–150 MeV/N energy interval the abundance of nuclei of Ca-Cr relative to iron-group (Z = 25–28) is found to be highly enhanced, as compared to high energy cosmic rays. Furthermore the observations of the energy spectra of O, N, and Ne ions and their fairly large fluences in the energy interval of 8–30 MeV/N below the geomagnetic cut off energy of 50 MeV/N for fully stripped nuclei at the Skylab orbit indicate that these heavy ions are probably in partly ionised states. Thus, it is found that the Skylab results represent a new type of heavy ion population of low energy cosmic rays below 50 MeV/N, in the near Earth space and their properties are distinctly different from those of high energy cosmic rays and are similar to those of the anomalous component in the interplanetary space. The available data from the Skylab can be understood at present on the hypothesis that low energy interplanetary cosmic ray ions of oxygen etc. occur in partly ionised state such as O+1,O+2, etc. and these reach the inner magnetosphere at high latitudes where stripping process occurs near mirror points and this leads to temporarily trapped ions such as O+3, O+4, etc. It is noted that the origin of these low energy heavy cosmic ray ions in the magnetosphere and in interplanetary space is not yet fully understood and new type of sources or processes are responsible for their origin and these need further studies.  相似文献   

4.
Recent examinations of extraterrestrial materials exposed to cosmic rays for different intervals of time during the geological history of the solar system have generated a wealth of new information on the history of cosmic radiation. This information relates to the temporal variations in
  1. the flux and energy spectrum of low energy (solar) protons of ? 10 MeV kinetic energy;
  2. the flux and energy spectrum of (solar) heavy nuclei of Z > 20 of kinetic energy, 0.5–10 MeV/n;
  3. the integrated flux of protons and heavier nuclei of ? 0.5 GeV kinetic energy, and
  4. the flux and energy spectrum of nuclei of Z > 20 of medium energy — 100–2000 MeV/n kinetic energy.
The above studies are entirely based on the natural detector method which utilises two principal cosmogenic effects observed in rocks, (i) isotopic changes and (ii) changes in the crystalline structure of rock constituents, due to cosmogenic interactions. The information available to date in the field of hard rock cosmic ray archaeology refers to meteorites and lunar rocks/soil. Additional information based on study of cosmogenic effects in man-made materials exposed to cosmic radiation in space is also discussed. It is shown that the natural detectors inspite of their extreme simplicity have begun to provide cosmic ray information in a very quantitative and precise manner comparable to the most sophisticated electronic particle detectors. The single handicap in using the hard rock detectors is however the uncertainty regarding their manner of exposure, geometry etc. At present, a variety of techniques are being used to study the evolutionary history of extraterrestrial materials and as this field grows, uncertainties in cosmic ray archaeology will correspondingly decrease.  相似文献   

5.
Wibberenz  G.  le Roux  J.A.  Potgieter  M.S.  Bieber  J.W. 《Space Science Reviews》1998,83(1-2):309-348
In the present phase of the solar cycle no big transients leading to strong modulation had been observed after 1991. Apart from a few minor disturbances cosmic rays were still recovering to a new intensity maximum. It was suggested, therefore, that existing literature from previous cycles should be critically reviewed. The scene was set by the introductory papers on— phenomenology of cosmic ray modulation in successive solar cycles throughout the heliosphere— the present state of models for long term modulation and their shortcomings— the relation between cosmic ray variations and the magnitude of the interplanetary magnetic field (the CR-B-relation)— charge dependent effects.In the discussions, the study of propagating diffusive disturbances and the CR-B-relation played a central role. The difference was stressed between isolated transient disturbances in the inner solar system (Forbush decreases), and the long lasting, step-like decreases caused by merged interaction regions in the outer heliosphere. The recovery rates following the step-like decreases vary with the phase in the 22-year solar cycle. In some cases this requires a modification of existing drift models. In the outer heliosphere, the CR-B-relation leads to the result 1/ between the diffusion coefficient and the field magnitude . This simple result is a challenge for theoreticians to derive the perpendicular diffusion coefficient fromfirst principles. The three articles in this report essentially follow the list of open points and arguments just presented.The article "Observations and Simple Models" is organised around the model of a propagating diffusive barrier, its application to Forbush effects in the inner heliosphere and to decreases caused by merged interaction regions in the outer heliosphere. Acomparison of observed Forbush decreases with model predictions requires a careful separation of the two steps related to the turbulent region behind the shock front and the closed magnetic field regions of the ejecta (the interplanetary counterparts of coronal mass ejections). It is shown that models for propagating disturbances can be used to derive values of the diffusion coefficients phenomenologically, not only during the disturbance, but also in the ambient medium.The "Modeling of Merged Interaction Regions" summarizes the dynamic and time-dependent process of cosmic ray modulation in the heliosphere. Numerical models with only a time-dependent neutral sheet prove to be successful when moderate to low solar activity occurs but fail to describe large and discrete steps in modulated cosmic rays when solar activity is high. To explain this feature of heliospheric modulation, the concept of global merged interaction regions is required. The com-bination of gradient, curvature and neutral sheet drifts with these global merged interaction regions has so far been the most successful approach in explaining the 11-year and 22-year cycles in the long-term modulation of cosmic rays.The "Remarks on the Diffusion Tensor in the Heliosphere" describe available theories of perpen-dicular diffusion and drift, and discuss their relevance to cosmic rays in the heliosphere. In addition, the information about diffusion coefficients and spatial gradients obtained from the analysis of steady state anisotropies at neutron monitor energies is summarized. These topics are intimately related to the other two articles. They are also part of the general discussion about the "Diffusion Tensor throughout the Heliosphere" which played an important role in all working groups.  相似文献   

6.
A model of the time evolving relativistic solar proton spectra for the 7 May 1978 ground level solar cosmic ray event is presented. This event, with associated cosmic ray neutron monitor increases of over 100% and containing relativistic particles with energies greater than 10 GeV/nucleon was characterized by an extreme anisotropy and a rapidly evolving spectrum, particularly during the initial phase. The observational data from cosmic ray neutron monitors viewing in the anti-Sun direction (180° away from the initial solar particle direction) indicates that a back scatter pulse of 4% of the primary pulse was observed at the Earth 20 min after the event onset. Previous attempts to model the solar particle spectrum found consistent and systematic differences between the theoretically calculated cosmic ray increase and the actual increase as observed by neutron monitors. In order to reconcile these differences, we have concluded that the observational data give evidence for a rigidity dependent release of relativistic solar protons from the solar corona during the very early stages of this event.An invited paper presented at STIP Workshop on Shock Waves in the Solar Corona and Interplanetary Space, 15–19 June, 1980, Smolenice, Czechoslovakia.  相似文献   

7.
This paper summarizes new data in several fields of astronomy that relate to the origin and acceleration of cosmic rays in our galaxy and similar nearby galaxies. Data from radio astronomy shows that supernova remnants, both in our galaxy and neighboring galaxies, appear to be the sources of most of the accelerated electrons observed in these galaxies. -ray measurements also reveal several strong sources associated with supernova remnants in our galaxy. These sources have -ray spectra that are suggestive of the acceleration of cosmic-ray nuclei. Cosmic-ray observations from the Voyager and Ulysses spacecraft suggest a source composition that is very similar to the solar composition but with distinctive differences in the 4He, 12C,14 N and 22Ne abundances that are the imprint of giant W-R star nucleosynthesis. Injection effects which depend on the first ionization potential (FIP) of the elements involved are also observed, in a manner similar to the fractionization observed between the solar photosphere and corona and also analogous to the preferential acceleration observed for high FIP elements at the heliospheric solar wind termination shock. Most of the 59Ni produced in the nucleosynthesis of Fe peak nuclei just prior to a SN explosion appears to have decayed to 59Co before the cosmic rays have been accelerated, suggesting that the59 Ni is accelerated at least 105 yr after it is produced. The decay of certain K capture isotopes produced during cosmic-ray propagation has also been observed for the first time. These measurements suggest that re-acceleration after an initial principal acceleration cannot be large. The high energy spectral indices of cosmic-ray nuclei show a significant charge dependent trend with the index of hydrogen being -2.76 and that of Fe -2.61. The escape length dependence of cosmic rays from our galaxy can now be measured up to ~300 GeV nucl-1 using the Fe sec/Fe ratio. This escape length is P -0.05 above 10 GeV nucl-1 leading to a typical source spectral index of (2.70±0.10) -0.50 = -2.20 for nuclei. This is similar to the source index of -2.3 inferred for electrons within the errors of ±0.1 in the index for both components. Spacecraft measurements in the outer heliosphere suggest that the local cosmic-ray energy density is ~2eV cm-3 – larger than previously assumed. Gamma-ray measurements of electron bremsstrahlung below 50 MeV from the Comptel experiment on CGRO show that fully 20–30% of this energy is in electrons, several times that previously assumed. New estimates of the amount of matter traversed by cosmic rays using measurements of the B/C ratio are also higher than earlier estimates – this value is now ~10 g cm-2 at 1 GeV nucl-1. Thus altogether cosmic rays are energetically a more important component of our galaxy than previously assumed. This has implications both for the types of sources that are capable of accelerating cosmic rays and also for the role that cosmic rays may play in ionizing the diffuse interstellar medium.  相似文献   

8.
The cosmic ray isotopic composition measurements from the High Energy Telescope (HET) on the Ulysses spacecraft are reviewed. The source isotopic composition of key elements is found to be surprisingly like the Solar system abundances with the notable exception of 22Ne. The average density of interstellar material cosmic rays traverse is found to be 0.25 atom cm–3, corresponding to a confinement time of 20 Myr. Vanadium isotopic abundances are shown to be consistent with weak cosmic-ray reacceleration. The implications of these measurements are discussed.  相似文献   

9.
Kirkby  Jasper  Laaksonen  Ari 《Space Science Reviews》2000,94(1-2):397-409
Satellite observations have recently revealed a surprising imprint of the 11-year solar cycle on global low cloud cover. The cloud data suggest a correlation with the intensity of galactic cosmic rays. If this apparent connection between cosmic rays and clouds is real, variations of the cosmic ray flux caused by long-term changes in the solar wind could have a significant influence on the global energy radiation budget and the climate. However a direct link between cosmic rays and clouds has not been unambiguously established and, moreover, the microphysical mechanism is poorly understood. New experiments are being planned to find out whether cosmic rays can affect cloud formation, and if so how.  相似文献   

10.
The heliospheric cosmic-ray network–Pioneer 10/11, Voyager 1/2, Ulysses and IMP 8 have provided detailed observations of galactic and anomalous cosmic rays over a period of time that now exceeds 25 years and extends to heliocentric distances beyond 65 AU. These data, when compared over consecutive 11 year solar cycles, clearly establishes the existence of a 22-year cosmic ray modulation cycle that is dominated by the 11-year solar activity cycle but is strongly influenced by gradient and curvature drifts in association with the tilt of the heliospheric neutral current sheet as well as the mediation of the enhanced magnetic turbulence above the solar poles. Over successive solar minima these effects manifest themselves in the remarkable differences in the energetic particle time histories, in the magnitude and sign of the radial and latitudinal intensity gradients and in the changes in the energy spectra of anomalous cosmic rays as a function of heliocentric distance.From solar minimum to solar maximum the long term modulation is principally a combination of two solar related phenomena, the cumulative effect of long-lived global merged interaction regions (GMIRs) and gradient and curvature drifts in the interplanetary magnetic field. For the periods when positive ions flow in over the solar poles and out along the heliospheric current sheet, the modulation of ions is dominated by GMIRs. When this flow pattern is reversed it is found that drifts are an important but not dominant factor for cosmic ray modulation with the current sheet related drift effects decreasing with increasing rigidity R, heliolatitude and heliocentric distance. Over a single solar cycle these conclusions are confirmed at 1 AU by comparing the relative modulation of cosmic-ray helium nuclei and electrons.  相似文献   

11.
Low energy cosmic rays produced by the spectacular series of solar flares in August 1972 are reviewed. Satellite observations of electrons, protons and alpha particles are compared. The proton differential energy spectrum is discussed at certain key times during the events. Three energetic storm particle events were produced over the time period covered by the detailed analysis, 2–11 August. The origin of the cosmic ray square wave on 5 August is discussed. Measurements of heavy ions are available both from Pioneer 10 and from a high latitude rocket flight on 4 August.The literature survey for this review was concluded in August 1975.  相似文献   

12.
We use energy spectra of anomalous cosmic rays (ACRs) measured with the Cosmic Ray instrument on the Voyager 1 and 2 spacecraft during the period 1994/157-313 to determine several parameters of interest to heliospheric studies. We estimate that the strength of the solar wind termination shock is 2.42 (–0.08, +0.04). We determine the composition of ACRs by estimating their differential energy spectra at the shock and find the following abundance ratios: H/He = 5.6 (–0.5, +0.6), C/He = 0.00048 ± 0.00011, N/He = 0.011 ± 0.001, O/He = 0.075 ± 0.006, and Ne/He = 0.0050 ± 0.0004. We correlate our observations with those of pickup ions to deduce that the long-term ionization rate of neutral nitrogen at 1 AU is 8.3 × 10–7 s–1 and that the charge-exchange cross section for neutral N and solar wind protons is 1.0 × 10–15 cm2 at 1.1 keV. We estimate that the neutral C/He ratio in the outer heliosphere is 1.8(–0.7, +0.9) × 10–5. We also find that heavy ions are preferentially injected into the acceleration process at the termination shock.  相似文献   

13.
On an astronomical scale cosmic rays must be considered a tenuous and extremely hot (relativistic) gas. The pressure of the cosmic-ray gas is comparable to the other gas and field pressures in interstellar space, so that the cosmic-ray pressure must be taken into account in treating the dynamical properties of the gaseous disk of the galaxy. This review begins with a survey of present knowledge of the cosmic-ray gas. Then the kinetic properties of the gas are developed, followed by an exposition of the dynamical effects of the cosmic-ray gas on a large-scale magnetic field embedded in a thermal gas. The propagation of low-frequency hydromagnetic waves is worked out in the fluid approximation.The dynamical properties of the gaseous disk of the galaxy are next considered. The equations for the equilibrium distribution in the direction perpendicular to the disk are worked out. It is shown that a self-consistent equilibrium can be constructed within the range of the observational estimates of the gas density, scale height, turbulent velocity, field strength, cosmic-ray pressure, and galactic gravitational acceleration. Perturbation calculations then show that the equilibrium is unstable, on scales of a few hundred pc and in times of the order 2 × 107 years. The instability is driven about equally by the magnetic field and the cosmic-ray gas and dominates self-gravitation. Hence the instability dominates the dynamics of the interstellar gas and is the major effect in forming interstellar gas clouds. Star formation is the end result of condensation of the interstellar gas into clouds, indicating, then, that cosmic rays play a major role in initiating star formation in the galaxy.The cosmic rays are trapped in the unstable gaseous disk and escape from the disk only in so far as their pressure is able to inflate the magnetic field of the disk. The observed scale height of the galactic disk, the short life (106 years) of cosmic-ray particles in the disk of the galaxy, and their observed quiescent state in the disk, indicate that the galactic magnetic field acts as a safety valve on the cosmic ray pressure P so that PB 2/8. We infer from the observed life and quiescence of the cosmic rays that the mean field strength in the disk of the galaxy is 3–5 × 10–6 gauss.  相似文献   

14.
Webber  W.R.  Lockwood  J.A. 《Space Science Reviews》1998,83(1-2):159-167
This paper summarizes cosmic ray data on both galactic and anomalous particles in the inner and outer heliosphere near the sunspot minimum in 1995 and 1996 at the end of solar cycle 22. These data come from the IMP spacecraft in the inner heliosphere and the Voyager and Pioneer spacecraft in the outer heliosphere. In the inner heliosphere, the cosmic ray intensities at all energies in 1996 have recovered to almost the same maximum values they had at the last sunspot minimum in 1987 and the intensities are an even closer match to those observed two 11-year cycles earlier in 1976. In the outer heliosphere beyond 40 AU the intensity recovery is very slow and the intensities at all energies and for all species are almost constant in 1995-96 indicating that little further recovery can be expected in this cycle. The intensity of galactic cosmic rays in 1996 is only 0.3-0.5 of that observed at the same radius of 42 AU in 1987 and for anomalous cosmic rays this ratio is only 0.1-0.2. This suggests a dramatically different entry of particles into the heliosphere in the two cycles for both types of particles as well as significantly different particle flow characteristics in the outer heliosphere. The net result of these different characteristics is that near the Earth only a relatively small intensity difference is observed between successive 11-year solar cycles whereas in the outer heliosphere the differences between cycles become very large and may even dominate the overall modulation.  相似文献   

15.
Belov  Anatoly 《Space Science Reviews》2000,93(1-2):79-105
The current knowledge and ideas, obtained from groundlevel observations and concerning the solar modulation of cosmic rays, are reviewed. The following topics are discussed: observations of the cosmic ray modulation at the Earth and main characteristics of the accumulated experimental data; manifestations of the solar magnetic cycle in cosmic rays; the effect of hysteresis and its relation to the size of the heliosphere; the rigidity spectrum of long-term cosmic ray variations; the influence of the sporadic effects on long-term modulation; long-term variations of cosmic ray anisotropy and gradients; the place of groundlevel observations in current studies of cosmic ray modulation and their future prospects. Particular consideration is given to the correlation of long-term cosmic ray variations with different solar-heliospheric parameters, and to empirical models of cosmic ray modulation. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
Marsh  Nigel  Svensmark  Henrik 《Space Science Reviews》2003,107(1-2):317-325
An increasing number of studies indicate that variations in solar activity have had a significant influence on Earth's climate. However, the mechanisms responsible for a solar influence are still not known. One possibility is that atmospheric transparency is influenced by changing cloud properties via cosmic ray ionisation (the latter being modulated by solar activity). Support for this idea is found from satellite observations of cloud cover. Such data have revealed a striking correlation between the intensity of galactic cosmic rays (GCR) and low liquid clouds (<3.2 km). GCR are responsible for nearly all ionisation in the atmosphere below 35 km. One mechanism could involve ion-induced formation of aerosol particles (diameter range, 0.001–1.0 μm) that can act as cloud condensation nuclei (CCN). A systematic variation in the properties of CCN will affect the cloud droplet distribution and thereby influence the radiative properties of clouds. If the GCR-Cloud link is confirmed variations in galactic cosmic ray flux, caused by changes in solar activity and the space environment, could influence Earth's radiation budget. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
Throughout 1993, as the Ulysses spacecraft traveled from 23° to 45° south heliolatitude, the HI-SCALE instrument on the spacecraft measured a recurrent series of enhanced particle fluxes with a recurrence period of 26.5 days. These particles are accelerated from a background seed population by the corotating interaction regions (CIRs) associated with a southern solar polar coronal hole. Using the Wart detector telescope of the HI-SCALE instrument, we have analyzed the elemental abundances of C, N, O, and Fe relative to He for 0.5–4.0 MeV/nucl ions and Ne, Mg, and Si for 1.0–4.0 MeV/nucl ions in the CIRs. We compare the relative abundances to some previous measurements reported from 1 A.U. as well as with solar photosphere abundances. We note that HI-SCALE measurements of the heliolatitude dependence of the oxygen abundance and spectrum as reported by Lanzerottiet al. (1994) suggest that a substantial fraction of the seed population for the CIR-accelerated oxygen is likely to be the anomalous oxygen component of the cosmic rays.  相似文献   

18.
Cosmic-ray scintillations registered by ground-base observations reflect, as a rule, the action of a whole number of processes proceeding in interplanetary space and Earth's magnetosphere. The study of scintillation phenomena in cosmic rays, is, in fact, divided into a number of problems connected with the interaction of charged particles of cosmic radiation with the matter and fields which they encounter in the entire length of their propagation. The cosmic-ray scintillations established by different authors from the data of ground-base and high-altitude devices for quiet and disturbed periods, as well as the theoretical calculations of different models and mechanisms of the origin and development of cosmic-ray scintillations are analyzed. High-frequency scintillations of f 10-5 Hz are shown to be precursors of an approaching shock wave, scintillations with periods of the order of 10–20 and 40–50 min being most sensitive to disturbances of interplanetary medium near the Earth. Since cosmic rays of different energies are sensitive to different processes in interplanetary space at different distances from the Earth, one can sound the conditions in interplanetary medium up to 1015 cm from the Earth by measuring particle fluxes at different energy ranges.  相似文献   

19.
In this review we briefly present the observational results on the new radiation belt of the Earth originating from the anomalous cosmic rays (ACR) and their implications. Firstly, a brief historical account of the development of our knowledge and ideas on the trapped particles in the geomagnetic field is presented. We then discuss briefly the first observations of the anomalous cosmic rays inside the magnetosphere in theSkylab experiment in 1973–1974 (Biswaset al., 1975). This showed that the measured ACR oxygen flux was at least 25 times higher than the calculated flux from the interplanetary value, indicating the presence of trapped ACR component originating from the Blake-Freisen mechanism (Biswas and Durgaprasad, 1980). In the Cosmos experiment of the USSR, the presence of trapped ACR oxygen was indicated from the observations of double peaked angular distributution (Grigorovet al., 1990). In the recent satellite experiment, MAST-SAMPEX the new results were obtained which confirmed the earlier indications and established the presence of the trapped ACR component in the geomagnetic field from the spatially separated components of the ACR (Cummingset al., 1993). The properties of the trapped ACR ions as measured in the SAMPEX are briefly discussed. The theoretical model of trapped ACR oxygen by Blake and Preisen are briefly summarised. The implications of the new observations are noted.  相似文献   

20.
The basic physical processes that lead to the long-term modulation of cosmic rays by the solar wind have been known for many years. However our knowledge of the structure of the heliosphere, which determines which processes are most important for the modulation, and of the variation of this structure with time and solar activity level is still incomplete. Study of the modulation provides a tool for probing the scale and structure of the heliosphere. While the Pioneer and Voyager spacecraft are surveying the radial structure and extent of the heliosphere at modest heliographic latitudes, theUlysses mission is the first to undertake a nearly complete scan of the latitudinal structure of the modulated cosmic ray intensity in the inner heliosphere (R<5.4 AU).Ulysses will reach latitudes of 80°S in September 1994 and 80°N in July 1995 during the approach to minimum activity in the 11 year solar cycle. We present a first report of measurements extending to latitudes of 52°S, which show surprisingly little latitudinal effect in the modulated intensities and suggest that at this time modulation in the inner heliosphere may be much more spherically symmetric than had generally been believed based upon models and previous observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号