首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
伏晓艳  高歌 《推进技术》2008,29(2):139-142
运用GAO-YONG可压缩湍流方程组,采用同位网格SIMPLE算法,对扩压器跨声速流动中的二维激波/湍流边界层干扰现象进行了数值模拟。将计算得到的流场的时均参数与实验值进行比较,数值模拟结果在激波强度、壁面压力分布以及分离点和再附点位置等方面,与实验值吻合较好,表明GAO-YONG可压缩湍流方程组能够比较准确的模拟较强激波/湍流边界层干扰流动,从而进一步为GAO-YONG湍流模型的正确性及其在可压缩流场模拟方面的适用性提供了佐证。  相似文献   

2.
应用GAO-YONG湍流模式数值模拟三维激波/湍流边界层干扰   总被引:3,自引:1,他引:2  
闫文辉  高歌 《航空动力学报》2009,24(10):2193-2200
应用GAO-YONG可压缩湍流模式数值模拟了三维激波/湍流边界层干扰算例之一——单鳍流动.攻角20°,来流马赫数2.93,雷诺数9.8×105.对流项和扩散项分别采用Roe格式和二阶中心差分格式计算.Runge-Kutta显示时间推进方法求解了半离散的控制方程.包括壁面压力分布,边界层内流动偏移角等在内的计算值与试验数据进行了比较.准确地预测出了三维激波/湍流边界层干扰流场的主要流动特性——λ波结构,主分离涡核,膨胀区,滑移线等.计算与Alvi等提出的单鳍流动的理论模型符合很好,得到了平板表面压力以及分离线、再附线等在单鳍流动中所独有的半圆锥特性.   相似文献   

3.
求解可压缩流动的同位网格SIMPLE方法研究   总被引:1,自引:0,他引:1  
伏晓艳  高歌 《航空动力学报》2007,22(10):1673-1677
在Rhie-Chou动量插值的基础上,推导了同位网格可压缩SIMPLE算法.经过无粘流超音速凸包算例和激波/湍流边界层干扰算例计算发现,如果对流项采用高阶有界HLPA格式,密度插值采用一阶迎风和中心差分的混合格式,这种算法能够很好地模拟凸包超音流的流动现象,在采用了新型GAO-YONG湍流模型后也能够较好地模拟激波/湍流边界层干扰.   相似文献   

4.
用GAO—YONG可压缩湍流方程数值模拟了Delery管道凸起跨音流场中的激波湍流边界层干扰现象。分析了GAO-YONG可压缩湍流方程组对湍流的非平衡、多尺度、各向异性等特性的描述能力。计算中对流项、扩散项分别采用二阶ROE格式和二阶中心差分格式离散,并用多步Runge-Kutta显式时间推进法求解了空间离散后的控制方程。计算很好地模拟到了压力平台区、“入”波结构等典型激波湍流边界层干扰的流动现象,也得到了壁面压力分布、平均速度剖面以及雷诺应力分布等,并与相应的实验数据进行了对比分析,两者符合很好。  相似文献   

5.
由于缺乏对某些重要流动特征的考虑,针对不可压流发展的标准SST湍流模型在描述超声速流场时存在明显的局限性。为改善SST模型在吸气式高超声速推进系统内流等复杂超声速流场中的预测精度,基于流动特征结构定向开展了激波和可压缩效应改进。通过激波/湍流边界层判别函数和可压缩效应判别函数定位标准SST模型参数或建模假设失效的区域,针对性地改进湍流模型。采用超声速平板边界层流动、超声速压缩拐角分离流动、超声速隔离段复杂激波串流动以及HIFiRE-2超声速内流等算例进行了测试,结果表明改进模型具有与标准SST模型一致的边界层预测能力,但显著提高了对激波干扰流动及逆压分离流的预测精度。  相似文献   

6.
高马赫数下激波湍流边界层干扰数值研究   总被引:2,自引:0,他引:2  
应用GAO—YONG可压缩湍流方程组数值模拟了入射斜激波/平板湍流边界层相互干扰现象,计算了来流马赫数为5.0,激波入射角度分别为15.876°、23.287°两种不同激波干扰强度下的流场。计算程序中的对流项、扩散项分别采用二阶ROE格式和二阶中心差分格式离散,并用多步Runge—Kutta显式时间推进法求解空间离散后的控制方程。计算较好地模拟了高马赫数下的激波/湍流边界层干扰的流场结构,位移边界层厚度,动量损失厚度等,也比较准确地预测了平板壁面压力、摩阻系数等气动力参数的分布。  相似文献   

7.
为研究压缩拐角激波/边界层干扰问题,抓住可压缩流动中的密度变化特性,利用构造的可压缩Von Karman尺度,基于KDO(Kinetic Dependent Only)湍流模型,发展出可压缩湍流模型CKDO(Compressible Kinetic Dependent Only)。通过对8°,16°,20°和24°压缩拐角算例的数值模拟,测试了其对可压缩、激波/边界层干扰这一湍流难题的求解能力。计算结果表明,总体上CKDO模型对壁面压力和壁面摩擦阻力系数的捕捉能力优于其它模型,并且随着压缩拐角角度的增大,其描述该流动的能力更加突出。CKDO模型在24°压缩拐角处计算的分离区大小仅比实验大10%左右,明显比其它模型结果好。这表明CKDO模型在模拟激波/边界层干扰这一类流动中有较好的适用性。  相似文献   

8.
将GAO-YONG湍流模型应用于湍流传热的研究,分别计算了平板剪切湍流和二维平面冲击射流的湍流传热问题.边界层剪切湍流流动与换热的计算表明:与传统的湍流模型不同,GAO-YONG湍流模型不需要对近壁区域做任何特殊处理(比如壁面函数、低Reynolds数修正等)即可模拟出从壁面到主流区的全部流动与传热情况;另外,对于冲击射流Nusselt数的模拟也得到了与实验符合较好的计算结果,准确地捕捉到了2种冲击高度下流场换热的不同特征,表明了GAO-YONG湍流模型能够较高精度地计算湍流换热.   相似文献   

9.
在雷诺平均方法的基础上,通过耦合k_(-ω)SST湍流模型和间歇因子转捩模型,引入湍流模型和转捩模型的可压缩修正方法,对高超声速平板、双楔、尖锥三类模型边界层转捩流动开展了数值模拟研究。与实验结果的对比分析表明基于压力梯度表征参数T_w=R_(TΩ/ω)的简化三方程转捩模型,能够准确捕捉高超声速平板边界层流动的转捩起始位置、转捩区域长度以及湍流区壁面热流。而对于双楔、尖锥模型,改进前的简化三方程转捩模型由于受到流动可压缩效应的影响,边界层转捩后湍流区的壁面热流模拟预测结果明显高于实验值。在添加模型可压缩修正方法后,转捩区域长度和湍流区壁面热流模拟结果得到有效改善,与实验值吻合较好。可见,简化三方程转捩模型在添加可压缩修正方法后具备准确模拟预测高超声速边界层流动转捩的潜力。  相似文献   

10.
王礼旭  仲冬冬  葛宁  杨荣菲 《推进技术》2019,40(5):1032-1041
为了提高对激波/边界层相互干扰的基本理解,采用大涡模拟(LES)对来流马赫数Ma=2.9,转角为24°的压缩拐角激波与湍流边界层相互干扰进行了研究。采用回收/调节方法作为入口湍流生成技术,并在超声速平板湍流边界层上进行了验证。采用涡识别方法和数值纹影图等流动显示方法,研究了干扰区内激波与边界层相互干扰的结构变化特征。通过对比分析湍动能和雷诺正应力在不同流向位置的分布规律,研究表明:经过激波干扰后湍动能主要集中在边界层的外层,并在拐角附近形成一个低湍动能区;雷诺正应力流向分量和法向分量在边界层内的分布呈现为单峰结构,而展向分量呈现为双峰结构。运用间歇因子对分离激波的大尺度流向运动进行研究,发现激波围绕着平均分离点作前后运动,运动的尺度等于进口湍流边界层厚度的72%。证实了拐角下游G?rtler流向涡对的存在,并对其展向分布和空间演化特性进行了详细研究。  相似文献   

11.
A numerical simulation of shock wave turbulent boundary layer interaction induced by a 24° compression corner based on Gao-Yong compressible turbulence model was presented.The convection terms and the diffusion terms were calculated using the second-order AUSM (advection upstream splitting method) scheme and the second-order central difference scheme,respectively.The Runge-Kutta time marching method was employed to solve the governing equations for steady state solutions.Significant flow separation-region which indicates highly non-isotropic turbulence structure has been found in the present work due to intensity interaction under the 24° compression corner.Comparisons between the calculated results and experimental data have been carried out,including surface pressure distribution,boundary-layer static pressure profiles and mean velocity profiles.The numerical results agree well with the experimental values,which indicate Gao-Yong compressible turbulence model is suitable for the prediction of shock wave turbulent boundary layer interaction in two-dimensional compression corner flows.   相似文献   

12.
An evaluation of ten turbulence models is made for compressible flows encountered in current aircraft applications. The Baldwin–Lomax and P.D. Thomas algebraic models, the Baldwin–Barth and Spalart–Allmaras one-equation models, five low-Reynolds-number k– models and the Menter SST blended k–/k–ω model are examined. A zonal, upwind, implicit, factored algorithm is used to solve both the mean flow equations and the turbulence model equations for three-dimensional, compressible turbulent flow. Calculations are presented for both internal and external flowfields including a two-stream mixing layer, a supersonic flat-plate boundary layer, a transonic supercritical airfoil, a shock wave/turbulent boundary layer interaction, an ejector nozzle, a highly offset diffuser, and a twin impinging jet flowfield. The influence of two modifications to the production of turbulent kinetic energy for the low-Reynolds-number k– models is evaluated, a vorticity-based strain rate and a production limiter. A compressibility correction for high speed shear layers is also examined. Comparisons of the results of the various turbulence models are made with experimental measurements. Significant differences are observed in the model predictions when applied to the same problem using the same computational mesh and mean flow solver. The algebraic models are unable to capture the physics of these complex flowfields, particularly for the internal flow calculations. The performance of each model is dependent on the application. No universal model is found for all flowfields examined. Each one-equation and two-equation model has specific strengths and weaknesses and the performance of each model is assessed.  相似文献   

13.
数值模拟二维喷管激波/湍流附面层干扰流动   总被引:6,自引:0,他引:6  
采用可压缩性修正两方程湍流模型,数值模拟了3种不同波前马赫数的跨声速二维喷管内激波/湍流附面层干扰流动,对流场中时均参数和脉动参数的计算结果与实验值进行了比较。结果表明可压缩性修正的两方程湍流模型准确地模拟了正激波/湍流附面层干扰流动的时均参数和脉动参数,无分离和有分离的激波/湍流附面层干扰流动的基本规律。   相似文献   

14.
使用GAO-YONG方程组对可压湍流边界层的数值模拟   总被引:2,自引:2,他引:0  
高歌  任鑫 《航空动力学报》2004,19(3):289-293
应用SIMPLE/SIMPLER方法及QUICK格式求解GAO-YONG可压湍流方程组,对二维零压力梯度可压平板湍流边界层进行了数值模拟。结果表明,不需要任何经验系数及壁面函数的GAO-YONG可压湍流控制方程组对较广马赫数范围(Ma=0.2~2.4)平板边界层各项参数(表面摩擦系数Cf,对数律,亏损律等)能做出良好的预测。   相似文献   

15.
高超声速飞行器-进气道一体化热流数值计算   总被引:2,自引:1,他引:1  
采用CFD(计算流体动力学)技术, 开展了飞行器前体/发动机一体化气动热环境分析.对层流区、转捩区和湍流区分别采用计算模型, 在湍流区利用压缩性修正的SSGZ-Jk-ε湍流模型, 在转捩区引入代数型转捩因子模型描述边界层由层流逐渐过渡为完全湍流的流动过程.计算了前体和内通道的表面热流, 并与实验结果进行了对比.结果表明所采用的计算方法可以较好地预测前体及发动机内通道热流率, 流动状态、几何结构及激波入射对热流值影响较大.   相似文献   

16.
SST湍流模型在高超声速绕流中的改进   总被引:2,自引:0,他引:2  
刘景源 《航空学报》2012,33(12):2192-2201
为模拟高超声速湍流问题,对剪切应力输运(SST)湍流模型系数进行了修正。数值格式采用改进的总变差递减(TVD)格式,并对湍流模型的负值强制项进行了隐式处理。在此基础上计算了绕平板以及具有分离、再附、激波/边界层干扰等复杂流动结构的压缩拐角的高超声速流动。计算结果与试验数据及半经验公式的对比表明:SST湍流模型引入的雷诺剪切应力与湍动能之比为常数(Bradshaw数)在高超声速绕流中并不成立。Bradshaw数修正后的SST湍流模型与原模型相比,所计算的壁面压力、摩擦阻力和壁面热流分布更接近试验结果。  相似文献   

17.
超声速膨胀角入射激波/湍流边界层干扰直接数值模拟   总被引:2,自引:2,他引:0  
童福林  孙东  袁先旭  李新亮 《航空学报》2020,41(3):123328-123328
为了揭示膨胀效应对激波/湍流边界层干扰区内复杂流动现象的影响规律,采用直接数值模拟方法对来流马赫数2.9、30°激波角的入射激波与10°膨胀角湍流边界层相互作用问题进行了数值研究。系统地探讨了激波入射点分别位于膨胀角上游、膨胀角角点和膨胀角下游3种工况下膨胀角干扰区内若干基本流动现象,如分离泡、物面压力脉动及激波非定常运动、湍流边界层统计特性和相干结构动力学过程等。结果表明,激波入射点流向位置改变对分离区流向和法向尺度的影响显著,尤其是当激波入射点位于角点及其下游区域。研究发现,膨胀角干扰区内物面压力脉动强度急剧减小,分离区内压力波向下游传播速度将降低而在膨胀区内将升高,膨胀效应极大地抑制了分离激波的低频振荡运动。相较于入射激波与平板湍流边界层干扰,入射激波流向位置改变对膨胀角再附区速度剖面对数区及尾迹区影响显著,将导致其内层结构参数升高而外层降低,近壁区内将呈现远离一组元湍流状态的趋势。此外,流向速度脉动场本征正交分解分析指出,主模态空间结构集中在分离激波及剪切层根部附近而高阶模态以边界层内小尺度正负交替脉动结构为主。低阶重构流场结果表明,前者对应为分离泡低频膨胀/收缩过程而后者表征为分离泡高频脉动。  相似文献   

18.
具有无源控制空腔时正激波/湍流附面层干扰的数值模拟   总被引:3,自引:0,他引:3  
采用雷诺平均N-S方程和B/L代数湍流模型计算了具有无源控制空腔时正激波/湍流附面层干扰流场。计算与实验结果的比较表明,本文方法可较准确地预测激波结构、激波与附面层干扰区流动基本特征及波后流动分离状态、激波位置、波前马赫数等参数。   相似文献   

19.
NACA4412翼型低速绕流数值计算中湍流模型对比   总被引:1,自引:0,他引:1  
使用Spalart-Allmaras(S-A)、SSTk-ω、Gao-Yong 3种湍流模型对NACA4412翼型低速绕流进行了数值计算,研究了尾迹流动松弛效应。对流项采用Roe格式离散,扩散项采用二阶中心格式离散,离散后的控制方程用多步Runge-Kutta显示时间推进法求解。计算中对翼型尾缘流松弛效应进行了分析,比较了翼型表面压力系数、速度剖面、雷诺应力等的分布,3种湍流模型总体上能够较好地模拟NACA4412翼型低速绕流。SSTk-ω模型对流动细节及升力系数计算最好,Gao-Yong模型对翼型平均速度剖面及雷诺剪切应力分布计算最准确。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号