首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A precise calibration method for range and angle observation has been developed for eliminating the systematic error of tracking systems, thus improving the accuracy of orbit determination for geostationary satellites. The principle of calibration is based on an orbit determination employing a point of optical angle observation in addition to radio tracking observation, in which we estimate observation bias parameters simultaneously with orbital elements, including the effects of geodetic mismodelings. As shown by an actual calibration experiment in our ground station, orbit determinations is sufficiently accurate that the error of predicting satellite range falls within a few meters at four days after the day of orbit determination.  相似文献   

2.
A satellite-borne sensor can view a region at or above the Earth's surface. The size of this region depends on the satellite's altitude, the maximum range and scan angle of the sensor, the minimum above-the-horizon viewing angle required, the extent in altitude of the region to be viewed, and the maximum altitude of sensor obscuration by the atmosphere. Except for geosynchronous satellites this region moves relative to the Earth, so that constellations of satellites are generally necessary for continuous coverage. Satellite constellations which minimize the number of satellites required for continuous coverage are derived as a function of the angle subtended at the Earth's center by the coverage of a single satellite. This is done for single and triple continuous coverage of the entire Earth and of the polar regions extending to arbitrary latitude. Simple, cogent approximations for the configurations and numbers of satellites are found. Expressions which relate sensor capabilities and surveillance requirements to are presented. Examples are given to illustrate the use and accuracy of the results.  相似文献   

3.
The geostationary tether satellite system expands the geostationary orbit resource from a one-dimensional arc into a two-dimensional disk. The tethered satellites, each several thousand kilometers apart and aligned along the local vertical, are stabilized at the altitude of the geosynchronous orbital speed. When this system is applied to communications systems, it is estimated that the number of satellites can be increased as much as thirteenfold and the communication capacity can be increased more than seventeenfold, compared with a conventional geostationary satellite orbit system  相似文献   

4.
This correspondence considers the problem of optimally controlling the thrust steering angle of an ion-propelled spaceship so as to effect a minimum time coplanar orbit transfer from the mean orbital distance of Earth to mean Martian and Venusian orbital distances. This problem has been modelled as a free terminal time-optimal control problem with unbounded control variable and with state variable equality constraints at the final time. The problem has been solved by the penalty function approach, using the conjugate gradient algorithm. In general, the optimal solution shows a significant departure from earlier work. In particular, the optimal control in the case of Earth-Mars orbit transfer, during the initial phase of the spaceship's flight, is found to be negative, resulting in the motion of the spaceship within the Earth's orbit for a significant fraction of the total optimized orbit transfer time. Such a feature exhibited by the optimal solution has not been reported at all by earlier investigators of this problem.  相似文献   

5.
针对如何部署光学探测设备才能更好实现对空间目标的高精度高频度监视问题,考虑光照条件、相对关系及探测性能,构建了天/地基空间目标探测与成像仿真模型;按照轨道特征选取了94颗LEO(Low Earth Orbit,低地球轨道)卫星、63颗GEO(Geosynchronous Earth Orbit,地球同步轨道)卫星和18颗大椭圆轨道卫星,选用春夏秋冬典型季节的特定时间长度,仿真分析了国内地基、南北极科考站、LEO卫星、准GEO卫星等多平台光电手段的位置探测和成像观测能力;比对分析地基平台纬度和季节、天基平台轨道高度和倾角对探测能力的影响得出:南北极科考站相比于国内站点可提高重点季节的探测时效性,98°倾角LEO平台对低轨目标成像时效性方面更具优势,等.在此基础上,提出了我国空间目标光电观测设备天地一体的布局构想.  相似文献   

6.
In this paper some basic concepts involved in efficient orbit/spectrum utilization for broadcast satellites are discussed. A theoretical analysis leads to the determination of interference zones and minimum number of frequency channels required for homogeneous systems operating in the 800-MHz and 12-GHz bands. A crossed-beam arrangement of satellite systems is proposed, in which the beams from satellites to service areas cross each other. This arrangement has a more efficient orbit spectrum utilization compared to the identical-longitude approach, in which the subsatellite point has the same longitude as the center of the service area, Based upon practical considerations, the elemental number of frequency channels required for world-wide coverage has been calculated in relation to satellite orbital position, for single-beam and multibeam satellite systems, using the identical-longitude and crossed -beam arrangements.  相似文献   

7.
Rosette Constellations of Earth Satellites   总被引:1,自引:0,他引:1  
Satellite constellations having rosette (flowerlike) orbital patterns are described which exhibit better worldwide coverage properties than constellations previously reported in U.S. literature. The best rosettes with 5-15 satellites are identified and evaluated relative to prior results. In most cases, the best results are obtained by placing one satellite in each of N separate planes and by using inclined rather than polar orbits. Coverage properties of these constellations are analyzed in terms of the largest possible great circle range between an observer anywhere on the Earth's surface and the nearest subsatellite point. When evaluated in this manner, coverage properties are invariant with deployment altitude. As deployment altitude is reduced, however, higher order constellations must be used to maintain a fixed minimum viewing angle. Coverage properties are also invariant with deployment orientation relative to Earth coordinates, although specific orientations can cause the satellite patterns to appear quasi-stationary. Thus these constellations offer a promising alternative to the use of geostationary satellites. Rosette constellations can also be used to guarantee multiple satellite visibility on a continuous worldwide basis. It is shown that 5, 7, 9, and 11 satellites are the minimum numbers required for single, double, triple, and quadruple visibility, respectively. Examples of rosette constellations which achieve these bounds are given.  相似文献   

8.
With the assumption that two satellites are placed in geostationary orbit at a small constant longitudinal separation, the feasibility of relative orbit determination by means of intersatellite tracking is studied analytically. Two types of tracking are examined: range-and-angle tracking and range-only tracking. Two-body orbital motion with first-order approximation of the relative orbital motion is assumed. The effect of solar radiation perturbation is evaluated numerically, and the study which neglects the perturbation is justified. The accuracy assessment of the relative orbit determination is given in general terms  相似文献   

9.
The collisions between stationary satellites, and those between a stationary satellite and abandoned stationary satellites which have nearly synchronous orbits with relatively large inclination are discussed. A general formula is introduced for calculating the probability of collision, as a function of time, three-dimensional sizes, orbital bounds, and numbers of satellites. Numerical calculation shows that the probability of collision is negligible if the sizes and numbers are comparable to those of existing satellites, whereas collision is possible for larger size, e.g., for a huge hypothetical gigawatt solar power satellite. The possibility would become large if the satellites continued to increase in number and to be abandoned in the stationary orbit at the present rate over a century, even if the size is ordinary, such as several meters.  相似文献   

10.
根据非合作低轨卫星的特点,可以被动测量多颗卫星信号的来向,通过测向交叉的方式进行定位。但是通过星历解算出的卫星位置位于地心地固坐标系,用户测量的方位角和俯仰角基于站心坐标系。针对非合作低轨卫星测向交叉定位时目标用户角度信息与卫星位置基于不同坐标系的问题,提出了一种迭代最小二乘定位算法,通过迭代的方式不断收敛定位结果,能够在目标用户角度信息与卫星位置基于不同坐标系的情况下,解决非合作低轨卫星的测向交叉定位问题。仿真结果表明,基于迭代最小二乘定位算法能够实现非合作低轨卫星仅利用角度定位,并分析了测角精度、卫星轨道高度、参与定位卫星数与定位误差之间的关系。针对迭代的计算方法,分析了迭代过程中不同收敛条件下迭代次数与定位误差之间的关系。在保证定位精度的情况下,将迭代收敛范围设置为8~30 km,可以降低2~3次迭代次数。  相似文献   

11.
月球探测卫星的轨道支持   总被引:9,自引:1,他引:9  
主要讨论采用月球卫星的探测方式时,月球探测器对测控系统的轨道支持要求和实现手段。重点对月球卫星转移轨道段的轨道测量和确定方法进行研究,利用仿真的地面站的测距和测角资料进行了定轨误差分析。  相似文献   

12.
The forthcoming 10 cm range tracking accuracy capability holds much promise in connection with a number of Earth and ocean dynamics investigations. These include a set of earthquake-related studies of fault motions and the Earth's tidal, polar and rotational motions, as well as studies of the gravity field and the sea surface topography which should furnish basic information about mass and heat flow in the oceans. The state of the orbit analysis art is presently at about the 10 m level, or about two orders of magnitude away from the 10 cm range accuracy capability expected in the next couple of years or so. The realization of a 10 cm orbit analysis capability awaits the solution of four kinds of problems, namely, those involving orbit determination and the lack of sufficient knowledge of tracking system biases, the gravity field, and tracking station locations. The Geopause satellite system concept offers promising approaches in connection with all of these areas. A typical Geopause satellite orbit has a 14 hour period, a mean height of about 4.6 Earth radii, and is nearly circular, polar, and normal to the ecliptic. At this height only a relatively few gravity terms have uncertainties corresponding to orbital perturbations above the decimeter level. The orbit s, in this sense, at the geopotential boundary, i.e., the geopause. The few remaining environmental quantities which may be significant can be determined by means of orbit analyses and accelerometers. The Geopause satellite system also provides the tracking geometery and coverage needed for determining the orbit, the tracking system biases and the station locations. Studies indicate that the Geopause satellite, tracked with a 2 cm ranging system from nine NASA affiliated sites, can yield decimeter station location accuracies. Five or more fundamental stations well distributed in longitude can view Geopause over the North Pole. This means not only that redundant data are available for determining tracking system biases, but also that both components of the polar motion can be observed frequently. When tracking Geopause, the NASA sites become a two-hemisphere configuration which is ideal for a number of Earth physics applications such as the observation of the polar motion with a time resolution of a fraction of a day. Geopause also provides the basic capability for satellite-to-satellite tracking of drag-free satellites for mapping the gravity field and altimeter satellites for surveying the sea surface topography. Geopause tracking a coplanar, drag-free satellite for two months to 0.03 mm per second accuracy can yield the geoid over the entire Earth to decimeter accuracy with 2.5° spatial resolution. Two Geopause satellites tracking a coplanar altimeter satellite can then yield ocean surface heights above the geoid with 7° spatial resolution every two weeks. These data will furnish basic boundary condition information about mass and heat flows in the oceans which are important in shaping weather and climate.  相似文献   

13.
Predicting the visibility of LEO satellites   总被引:2,自引:0,他引:2  
We present a simple algorithm to determine the visibility-time function of a circular low Earth orbit (LEO) satellite at a terminal on the Earth's surface. The simplicity of the algorithm is based on approximating the ground trace of the satellite (which is not a great circle due to Earth's rotation) during a time interval of the order of in-view period, by a great-circle are. This enables us to use spherical geometry to compute the location and time epoch of the observation of the closest approach of the satellite's ground trace to the terminal. This is also the epoch of the observation of the maximum elevation angle from the terminal to the satellite. Applying a result derived relating the maximum elevation angle to the in-view period, we obtain the visibility-time function of the satellite at the terminal. Numerical results illustrate the accuracy of the algorithm for a wide range of LEO orbit altitudes  相似文献   

14.
通常使用无电离层(IF)线性组合(LC)消除低地球轨道(LEO)卫星简化动力学精密定轨(POD)一阶电离层延迟误差,忽略了高阶电离层(HOI)延迟误差。随着LEO卫星POD技术的发展,计算不同轨道高度的HOI延迟并探索其变化已成为进一步提高POD精度的重要手段。首先,使用国际参考电离层-2016(IRI-2016)和国际地磁参考场第13代(IGRF-13)模型,计算电离层穿刺点(IPP)位置和地磁场强度。其次,使用平滑星载GNSS数据计算电离层斜路径总电子含量(STEC)。然后,分别计算GOCE、GRACE-A和SWARM-A/B卫星的二阶和三阶电离层延迟。最后,评估了HOI延迟对LEO卫星重叠轨道分析、卫星激光测距(SLR)检核和精密科学轨道(PSO)比较结果的影响。实验结果表明:HOI延迟对LEO卫星简化动力学POD的影响大约在毫米至厘米的数量级上;HOI延迟对LEO卫星简化动力学POD外符合精度的影响分别达到0.92,0.22,0.21和0.18 mm;随着LEO卫星轨道高度的增加,HOI延迟对LEO卫星简化动力学POD的影响减小。  相似文献   

15.
The concept of meridian orbits is briefly reviewed. It is shown that, if a satellite in the meridian orbit makes an odd number (>1) of revolutions per day, then the satellite passes over the same set of meridians twice a day. Satellites in such orbits pass over the same portion of the sky twice a day and every day. This enables a user to adopt a programmed mode of tracking, thereby avoiding a computational facility for orbit prediction, look angle generation, and auto tracking. A constellation of 38 or more satellites placed in a 1200-km altitude circular orbit is favorable for global communications due to various factors. It is shown that appropriate phasing in right ascension of the ascending node and mean anomaly results in a constellation wherein each satellite appears over the user's horizon one satellite after another. Visibility and coverage plots are provided to verify the continuous coverage  相似文献   

16.
17.
多星座导航能够增加可视卫星数量,改善卫星几何构型,已成为卫星导航定位领域发展的重要方向之一。多星座导航接收机自主完好性监测(RAIM)技术对提高导航系统的完好性具有重要作用。面向多星座导航的完好性监测需求,分析了传统随机抽样一致性(RANSAC)故障检测方法的不足,提出了一种基于最小样本集选星预处理的改进RANSAC RAIM算法。该算法基于最大四面体积法和GDOP值贡献度的选星方法选取具有较好构型的卫星构成卫星子集,取代了传统RANSAC RAIM方法通过遍历构成卫星子集,可有效避免卫星子集中存在较差卫星几何构型的情况,减少子集数量,提升故障检测的准确率。静态和动态仿真实验表明,改进的RANSAC RAIM算法在检测效率和检测准确率等方面明显优于传统方法。  相似文献   

18.
Internal processes in icy satellites, e.g. the exchange of material from the subsurface to the surface or processes leading to volcanism and resurfacing events, are a consequence of the amount of energy available in the satellites’ interiors. The latter is mainly determined shortly after accretion by the amount of radioactive isotopes incorporated in the silicates during the accretion process. However, for satellites—as opposed to single objects—important contributions to the energy budget on long time-scales can come from the interaction with other satellites (forcing of eccentricities of satellites in resonance) and consequently from the tidal interaction with the primary planet. Tidal evolution involves both changes of the rotation state—usually leading to the 1:1 spin orbit coupling—and long-term variations of the satellite orbits. Both processes are dissipative and thus connected with heat production in the interior. The way heat is transported from the interior to the surface (convection, conduction, (cryo-) volcanism) is a second main aspect that determines how internal processes in satellites work. In this chapter we will discuss the physics of heat production and heat transport as well as the rotational and orbital states of satellites. The relevance of the different heat sources for the moons in the outer solar system are compared and discussed.  相似文献   

19.
崔祜涛  张振江  崔平远 《航空学报》2011,32(6):997-1006
为了研究太阳-小行星-引力拖车三体系统中引力拖车的轨道运动问题,采用柱坐标系下的Hill方程描述了三体系统中引力拖车的运动情况,应用平均化方法消除周期项的影响,得到平均偏置非开普勒轨道的表达式,并研究了轨道稳定性与引力拖车最大有效拉力等问题.研究表明:三体系统中,在小行星飞行方向(或反方向)上存在偏置非开普勒轨道;与二...  相似文献   

20.
The orbital angular velocity of a stationary satellite expresses the perturbation in the orbit of the satellite. The minimum variation in direction of this velocity corresponds to the minimum fuel consumption rate to maintain a stationary satellite within allocated bounds. The directional variation of the orbital angular velocity is minimized by maintaining the ascending node of the orbit near the direction of the vernal equinox. The direction of the ascending node to maintain the orbit with minimum fuel consumption rate is given over the 18.6 yr nodal period of the moon. Over that period the inclination variation of the orbit and the angular speed proportional to the necessary fuel consumption rate to maintain the orbit are also given. An example of fuel consumption is given with a comparison with fuel savings over the standard stationkeeping method. The method here is applicable to the geostationary communication satellite, UHF broadcasting satellite, solar power satellite, etc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号