首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many practical problems arise when implementing digital terrain data in airborne knowledge-aided (KA) space-time adaptive processing (STAP). This paper addresses these issues and presents solutions with numerical implementations. In particular, using digital land classification data and digital elevation data, techniques are developed for registering these data with radar return signals, correcting for Doppler and spatial misalignments, adjusting for antenna gain, characterizing clutter patches for secondary data selection, and ensuring independent secondary data samples. These techniques are applied to select secondary data for a single-bin post-Doppler STAP algorithm using multi-channel airborne radar measurement (MCARM) program data. Results with the KA approach are compared with those obtained using the standard sliding window method for choosing secondary data. These results illustrate the benefits of using terrain information, a priori data about the radar, and the importance of statistical independence when selecting secondary data for improving STAP performance  相似文献   

2.
基于3DT的空时自适应单脉冲参数估计算法   总被引:1,自引:0,他引:1  
于佳  沈明威  吴迪  朱岱寅 《航空学报》2016,37(5):1580-1586
空时自适应处理(STAP)是机载预警雷达抑制杂波和干扰的一项关键技术,而多普勒三通道联合自适应处理(3DT)是适合工程实现的降维(RD)STAP方法。STAP目标检测后还需进一步估计目标的角度参数,因此将自适应单脉冲(AM)技术引入3DT,提出了一种高精度联合估计目标速度与方位空间角的空时自适应单脉冲算法。理论分析与仿真实验结果表明,当目标多普勒频率偏离检测多普勒单元中心频率时,该算法能同时减少目标多普勒跨越损失和空时导引矢量失配损失,进而提高输出信杂噪比(SCNR),改善目标测角精度。  相似文献   

3.
曹杨  冯大政  水鹏朗  向聪 《航空学报》2013,34(7):1654-1662
针对机载多输入多输出(MIMO)雷达杂波分布呈现空时耦合特性,提出一种空时自适应杂波对消器.利用机载MIMO雷达的脉冲回波数据,构造杂波对消器的系数矩阵.通过空时自适应杂波对消器的预处理,可以有效地抑制杂波,并通过与常规空时处理算法的级联,最终可以有效提高动目标的检测性能.实现了由传统地基雷达杂波对消器向机载运动平台的推广.仿真结果表明,这种自适应杂波对消器不仅适用于正侧视雷达,对于非正侧视雷达也同样适用.  相似文献   

4.
An approach to knowledge-aided covariance estimation   总被引:1,自引:0,他引:1  
This paper introduces a parametric covariance estimation scheme for use with space-time adaptive processing (STAP) methods operating in heterogeneous clutter environments. The approach blends both a priori knowledge and data observations within a parameterized model to capture instantaneous characteristics of the cell under test (CUT) and reduce covariance errors leading to detection performance loss. We justify this method using both measured and synthetic data. Performance potential for the specific operating conditions examined herein include: 1) averaged behavior within roughly 2 dB of the optimal filter, 2) 1 dB improvement in exceedance characteristic relative to the optimal filter, highlighting improved instantaneous capability, and 3) impervious ness to corruptive target-like signals in the secondary data (no additional signal-to-interference-plus-noise ratio (SINK) loss, compared with 10 dB or greater loss for the standard STAP implementation), with corresponding detections comparable to the optimal filter case  相似文献   

5.
Stap using knowledge-aided covariance estimation and the fracta algorithm   总被引:1,自引:0,他引:1  
In the airborne space-time adaptive processing (STAP) setting, a priori information via knowledge-aided covariance estimation (KACE) is employed in order to reduce the required sample support for application to heterogeneous clutter scenarios. The enhanced FRACTA (FRACTA.E) algorithm with KACE as well as Doppler-sensitive adaptive coherence estimation (DS-ACE) is applied to the KASSPER I & II data sets where it is shown via simulation that near-clairvoyant detection performance is maintained with as little as 1/3 of the normally required number of training data samples. The KASSPER I & II data sets are simulated high-fidelity heterogeneous clutter scenarios which possess several groups of dense targets. KACE provides a priori information about the clutter covariance matrix by exploiting approximately known operating parameters about the radar platform such as pulse repetition frequency (PRF), crab angle, and platform velocity. In addition, the DS-ACE detector is presented which provides greater robustness for low sample support by mitigating false alarms from undernulled clutter near the clutter ridge while maintaining sufficient sensitivity away from the clutter ridge to enable effective target detection performance  相似文献   

6.
Comparison between monostatic and bistatic antenna configurationsfor STAP   总被引:3,自引:0,他引:3  
The unique characteristics of bistatic radar operation on the performance of airborne/spaceborne moving target indicator (MTI) radars that use space-time adaptive processing (STAP) are discussed. It has been shown that monostatic STAP radar has the following properties. 1) For a horizontal flight path and a planar Earth the curves of constant clutter Doppler (isodops) are hyperbolas. 2) For a sidelooking antenna geometry the clutter Doppler is range independent. 3) Clutter trajectories in the cosφ-F plane (F=normalized Doppler) are in general ellipses (or straight lines for a sidelooking array). We demonstrate that these well-known properties are distorted by the displacement between transmitter and receiver in a bistatic configuration. It is shown that even for the sidelooking array geometry the clutter Doppler is range-dependent which requires adaptation of the STAP processor for each individual range gate. Conclusions for the design of STAP processors are drawn  相似文献   

7.
Due to the range ambiguity of high pulse-repetition frequency (HPRF) radars, echoes from far-range fold over near-range returns. This effect may cause low Doppler targets to compete with near-range strong clutter. Another consequence of the range ambiguity is that the sample support for estimating the array covariance matrix is reduced, leading to degraded performance. It is shown that space-time adaptive processing (STAP) techniques are required to reject the clutter in HPRF radar. Four STAP methods are studied in the context of the HPRF radar problem: low rank approximation sample matrix inversion (SMI), diagonally loaded SMI, eigencanceler, and element-space post-Doppler. These three methods are evaluated in typical HPRF radar scenarios and for various training conditions, including when the target is present in the training data  相似文献   

8.
Space-time autoregressive filtering for matched subspace STAP   总被引:3,自引:0,他引:3  
Practical space-time adaptive processing (STAP) implementations rely on reduced-dimension processing, using techniques such as principle components or partially adaptive filters. The dimension reduction not only decreases the computational load, it also reduces the sample support required for estimating the interference statistics. This results because the clutter covariance is implicitly assumed to possess a certain (nonparametric) structure. We demonstrate how imposing a parametric structure on the clutter and jamming can lead to a further reduction in both computation and secondary sample support. Our approach, referred to as space-time autoregressive (STAR) filtering, is applied in two steps: first, a structured subspace orthogonal to that in which the clutter and interference reside is found, and second, a detector matched to this subspace is used to determine whether or not a target is present. Using a realistic simulated data set for circular array STAP, we demonstrate that this approach achieves significantly lower signal-to-interference plus noise ratio (SINR) loss with a computational load that is less than that required by other popular approaches. The STAR algorithm also yields excellent performance with very small secondary sample support, a feature that is particularly attractive for applications involving nonstationary clutter.  相似文献   

9.
一种基于角度-多普勒补偿的均匀圆形   总被引:2,自引:1,他引:1  
采用均匀圆形相控阵天线的机载雷达杂波分布随距离变化而变化,各距离单元的杂波不再满足独立同分布的条件,造成统计型空时自适应处理(STAP)器性能下降。基于此,本文建立了均匀圆形天线机载雷达模型,对其杂波分布进行了分析,得出了空间角随阵元数非线性变化的特性造成其杂波距离维分布非均匀的结论。研究了一种均匀圆形天线机载雷达杂波抑制方法,该方法先通过修正的角度-多普勒补偿(MADC)预处理消除在杂波谱中心处的非均匀,再利用基于导数更新(DBU)技术进一步减小在其他方位杂波的非均匀程度。仿真结果表明了该方法的有效性。  相似文献   

10.
This paper describes and characterizes a new bistatic space-time adaptive processing (STAP) clutter mitigation method. The approach involves estimating and compensating aspects of the spatially varying bistatic clutter response in both angle and Doppler prior to adaptive clutter suppression. An important feature of the proposed method is its ability to extract requisite implementation information from the data itself, rather than rely on ancillary - and possibly erroneous or missing - system measurements. We justify the essence of the proposed method by showing its ability to align the dominant clutter subspaces of each range realization relative to a suitably chosen reference point as a means of homogenizing the space-time data set. Moreover, we numerically characterize performance using synthetic bistatic clutter data. For the examples considered herein, the proposed bistatic STAP method leads to maximum performance improvements between 17.25 dB and 20.75 dB relative to traditional STAP application, with average improvements of 6 dB to 10 dB.  相似文献   

11.
Space-time adaptive processing (STAP) holds tremendous potential for the new generation airborne surveillance radar, in which the phased array antennas and pulse Doppler processing mode are adopted. A new STAP approach using the multiple-beam and multiple Doppler channels is presented here for airborne phased array radar. The approach with space-time multiple-beam (STMB) architecture is robust to array errors and has very low system degrees of freedom (DOFs). Hence, it has low sample support requirement and it is very suitable for the practical planar phased array radar under nonhomogeneous clutter environments. Meanwhile, a new nonhomogeneous detector (NHD) based on the correlation dimension (CD) is also proposed here, which is used as an effective method to screen tracing data prior to detection processing. It can further improve the performance of the STAP approach in the severely nonhomogeneous clutter environments. Therefore, a scheme that incorporates the correlation dimension nonhomogeneity detector (CD-NHD) with the STMB is recommended, which we term CD-NHD-STMB. The experimental simulation results indicate that: 1) the STMB processor is robust to array element error and has high performance under nonhomogeneous clutter environments; 2) the CD-NHD is also effective on the nonhomogeneous clutter. As a result, the CD-NHD-STMB scheme is robust to array element error and nonhomogeneous clutter, and therefore available for airborne phased array radar applications.  相似文献   

12.
This paper describes an innovative concept for knowledge-based control of space-time adaptive processing (STAP) for airborne early warning radar. The knowledge-based approach holds potential for significant performance improvements over classical STAP processing in nonhomogeneous environments by taking advantage of a priori knowledge. Under this approach, knowledge-based control is used to direct pre-adaptive filtering, and to carefully select STAP algorithms, parameters, and secondary data cells  相似文献   

13.
赵军  朱兆达 《航空学报》2009,30(5):932-937
采用均匀圆形相控阵天线的机载雷达杂波分布随距离变化而变化,各距离单元的杂波不再满足独立同分布的条件,造成统计型空时自适应处理(STAP)器性能下降。基于此,本文建立了均匀圆形天线机载雷达模型,对其杂波分布进行了分析,得出了空间角随阵元数非线性变化的特性造成其杂波距离维分布非均匀的结论。研究了一种均匀圆形天线机载雷达杂波抑制方法,该方法先通过修正的角度 多普勒补偿(MADC)预处理消除在杂波谱中心处的非均匀,再利用基于导数更新(DBU)技术进一步减小在其他方位杂波的非均匀程度。仿真结果表明了该方法的有效性。  相似文献   

14.
Importance sampling for characterizing STAP detectors   总被引:1,自引:0,他引:1  
This paper describes the development of adaptive importance sampling (IS) techniques for estimating false alarm probabilities of detectors that use space-time adaptive processing (STAP) algorithms. Fast simulation using IS methods has been notably successful in the study of conventional constant false alarm rate (CFAR) radar detectors, and in several other applications. The principal objectives here are to examine the viability of using these methods for STAP detectors, develop them into powerful analysis and design algorithms and, in the long term, use them for synthesizing novel detection structures. The adaptive matched filter (AMF) detector has been analyzed successfully using fast simulation. Of two biasing methods considered, one is implemented and shown to yield good results. The important problem of detector threshold determination is also addressed, with matching outcome. As an illustration of the power of these methods, two variants of the square-law AMF detector that are thought to be robust under heterogeneous clutter conditions have also been successfully investigated. These are the envelope-law and geometric-mean STAP detectors. Their CFAR property is established and performance evaluated. It turns out the variants have detection performances better than those of the AMF detector for training data contaminated by interferers. In summary, the work reported here paves the way for development of advanced estimation techniques that can facilitate design of powerful and robust detection algorithms  相似文献   

15.
For pt. I see ibid., vol. 38, no. 4, p. 1295 (2002). In this second part we deal with the problem of detecting subspace random signals against correlated non-Gaussian clutter modeled by the compound-Gaussian distribution. In the first part of the paper, we derived the optimum Neyman-Pearson (NP) detector, the generalized likelihood ratio test (GLRT), and a constant false-alarm rate (CFAR) detector; we also provided some interesting interpretations of them. In this second part, these detectors are tested against both simulated data and measured high resolution sea clutter data to investigate the dependence of their performance on the various clutter and signal parameters. Numerical examples concern a space-time adaptive processing (STAP) scenario and a ground-based surveillance radar system scenario.  相似文献   

16.
章涛  钟伦珑  来燃  郭骏骋 《航空学报》2021,42(6):324592-324592
杂波谱稀疏恢复空时自适应处理(STAP)是一种有效减少杂波样本数需求的机载雷达杂波抑制方法。然而,空时平面被离散地划分为若干个网格点来构建空时导向矢量字典,当字典在失配时,杂波脊不能准确落在预先离散化的网格点上,稀疏恢复STAP性能严重下降。提出了一种基于稀疏贝叶斯学习的字典失配杂波空时谱估计方法,首先利用二维泰勒级数建立空时动态字典模型,然后将字典失配误差作为待估超参数构建贝叶斯稀疏恢复模型,并利用失配误差估计值对空时导向矢量字典进行修正,最后利用修正后的空时导向矢量字典重构杂波协方差矩阵,进而计算杂波空时谱。实验证明,该方法能够有效提高字典失配情况下的杂波谱稀疏恢复精度,杂波抑制性能优于已有字典预先离散化的稀疏贝叶斯学习STAP方法。  相似文献   

17.
NEW METHOD FOR REDUCED RANK STAP—NON CLUTTER CHANNEL METHOD   总被引:1,自引:0,他引:1  
Space- time adaptive processing(STAP) is aleading technology candidate for improving detec-tion performance of advanced airborne early warn-ing radar.In practical radar systems,the optimumfully adaptive space- time processing[1] cannot al-ways be implemented because of the computationalcomplexity,so the design of suboptimum proces-sors has been one of the key topics in STAP.Sev-eral reduced- rank STAP methods have been pro-posed in recent years.For example,based on thegeneralized sidelobe…  相似文献   

18.
基于杂波子空间估计的MIMO雷达降维STAP研究   总被引:1,自引:0,他引:1  
翟伟伟  张弓  刘文波 《航空学报》2010,31(9):1824-1831
 多输入多输出(MIMO)雷达是近年来出现的一种新体制雷达,针对MIMO体制的机载雷达开展空时自适应处理(STAP)技术研究是值得进一步努力的方向。本文研究了机载MIMO雷达STAP技术的降维算法,通过对STAP技术杂波抑制原理进行分析,推导并得到一种基于杂波子空间的降维算法。结合扁长椭球波函数(PSWF)的特点,提出了一种基于杂波子空间估计的降维算法,并与若干降维算法的杂波抑制性能进行比较。结果表明,当存在阵元幅相误差时,该算法在保持杂波抑制性能的同时能够有效地降低STAP算法的运算量。  相似文献   

19.
非正侧视阵列机载雷达多空间角补偿算法   总被引:1,自引:0,他引:1  
赵军  朱兆达 《航空学报》2010,31(11):2216-2221
 非正侧阵列机载雷达的杂波分布随距离变化而变化,各距离单元的杂波分布不再满足独立同分布条件,造成统计型空时自适应处理(STAP)处理器性能下降。本文提出了一种多空间角补偿(MSAC)的非正侧视机载雷达杂波抑制方法,该方法先通过角度-多普勒补偿(ADC)预处理以消除在谱中心处的杂波非均匀,然后采用MSAC法在多个多普勒方向使参考单元和待检测单元的杂波谱保持一致,从而进一步消除在其余方位的杂波非均匀。仿真结果表明了该方法的性能明显优于ADC法,且运算量增加不多。  相似文献   

20.
Multistage partially adaptive STAP CFAR detection algorithm   总被引:1,自引:0,他引:1  
A new method of partially adaptive constant false-alarm rate (CFAR) detection is introduced. The processor implements a novel sequence of orthogonal subspace projections to decompose the Wiener solution in terms of the cross-correlation observed at each stage. The performance is evaluated using the general framework of space-time adaptive processing (STAP) for the cases of both known and unknown covariance. It is demonstrated that this new approach to partially adaptive STAP outperforms the more complex eigen-analysis approaches using both simulated DARPA Mountain Top data and true pulse-Doppler radar data collected by the MCARM radar  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号