首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Physical Processes Related to Discharges in Planetary Atmospheres   总被引:1,自引:0,他引:1  
This paper focuses on the rudimentary principles of discharge physics. The kinetic theory of electron transport in gases relevant to planetary atmospheres is examined and results of detailed Boltzmann kinetic calculations are presented for a range of applied electric fields. Comparisons against experimental swarm data are made. Both conventional breakdown and runaway breakdown are covered in detail. The phenomena of transient luminous events (TLEs), particularly sprites, and terrestrial gamma-ray flashes (TGFs) are discussed briefly as examples of discharges that occur in the terrestrial environment. The observations of terrestrial lightning that exist across the electromagnetic spectrum and presented throughout this volume fit well with the broader understanding of discharge physics that we present in this paper. We hope that this material provides the foundation on which explorations in search of discharge processes on other planets can be based and previous evidence confirmed or refuted.  相似文献   

2.
This work addresses the role of non-thermal protons as a means of transporting energy in stellar atmospheres. The most dramatic transient visible phenomena are flares, the best studied of which are from the Sun. It is believed that energetic particles take a fundamental part in flare development, but it is controversial as to whether protons or electrons play the dominant role. This review is aimed at helping resolve the controversy. We start by outlining acceleration mechanisms for energetic particles, on the premise that the acceleration site is in the corona. The propagation of a proton beam through the atmosphere is discussed, together with the radiation signatures it would produce. Chromospheric evaporation is expected as the beam reaches the dense part of the atmosphere. Direct observational evidence for energetic protons is reviewed, from gamma-ray production involving energies >30 MeV to H polarization, which is significant at energies 100 keV. Proton beams can be detected in the corona via slowly-drifting type III bursts, while they can be directly sampled by spacecraft and, at energies >1 GeV, by detectors on the Earth. A number of key flare observations and energy arguments are debated from the viewpoint of protons versus electrons. The conclusion is that primary non-thermal protons are much more important, in terms of total energy, than non-thermal electrons in flares, and that the bulk of the energetic electrons are secondary.  相似文献   

3.
In this paper a review is presented of the present status of our knowledge of solar flare phenomena with special emphasis on the production of suprathermal particles and their solar effects. Of these energetic particles electrons play an important role since they produce the X-ray and radiobursts observed during many flares. Also, during their slowing down to thermal energies they contribute to the heating of localized regions in the solar atmosphere, through energy exchange with the ambient electrons. Observable radiations of energetic protons, and other nuclei, are produced through nuclear interactions leading to the emissions of gamma-ray lines. Detectable fluxes of these gamma-ray lines are produced only in the most powerful flares. Also the nuclei that enter into deeper layers of the solar atmosphere transfer most of their kinetic energy to the ambient plasma.  相似文献   

4.
The charged-particle telescope (CPT) onboard the Clementine spacecraft measured the fluxes of energetic protons emitted in solar energetic particle events. Protons in the energy range from 10 to 80 MeV were of greatest interest for radiation effects such as total dose and single event upsets. Energetic electrons were also of interest for spacecraft charging and their contribution to total dose. The lower-energy CPT electron channels (25-500 keV) were mainly of geophysical interest. While orbiting the moon, the CPT observed the wake created by the moon when it blocked the flow of energetic particles in the magnetotail region. The CPT provided opportunities to observe energetic electron bursts during magnetic storms and magnetospheric substorms. CPT data are particularly useful in multispacecraft studies of interplanetary disturbances and their interaction with the magnetosphere. The proton channels on the CPT provided data on solar energetic protons and storm-time protons associated with the passage of an interplanetary shock at 0903 UT on Feb. 21, 1994. Results are compared with those from GOES-7, SAMPEX, and GEOTAIL.  相似文献   

5.
Large solar flares are often accompanied by both emissions of high-energy quanta and particles. The emissions such as gamma-ray and hard X-ray photons are generated due to the interaction of high-energy nuclei and electrons with gases ambient in the flare regions and the solar atmosphere. Nonthermal radio emissions of wide frequency band are produced from energetic electrons while being decelerated by the action of plasmas and magnetic fields ambient in the flare site and its neighboring region. To understand the emission mechanism of these high-energy quanta on the Sun, it is, therefore, necessary to find the acceleration mechanism for both nuclei and electrons, which begins almost simultaneously with the onset of solar flares.A part of the accelerated nuclei and electrons are later released from the solar atmosphere into the outer space and eventually lost from the space of the solar system. Their behavior in the interplanetary space is considered to study the large-scale structure of plasmas and magnetic fields in this space.The observations and studies of high-energy phenomena on the Sun are thus thought of as giving some crucial hint important to understand the nature of various high-energy phenomena being currently observed in the Universe.  相似文献   

6.
This review summarizes both the direct spacecraft observations of non-relativistic solar electrons, and observations of the X-ray and radio emission generated by these particles at the Sun and in the interplanetary medium. These observations bear on three physical processes basic to energetic particle phenomena: (1) the acceleration of particles in tenuous plasmas; (2) the propagation of energetic charged particles in a disordered magnetic field, and (3) the interaction of energetic charged particles with tenuous plasmas to produce electromagnetic radiation. Because these electrons are frequently accelerated and emitted by the Sun, mostly in small and relatively simple flares, it is possible to define a detailed physical picture of these processes.In many small solar flares non-relativistic electrons accelerated during flash phase constitute the bulk of the total flare energy. Thus the basic flare mechanism in these flares essentially converts the available flare energy into fast electrons. Non-relativistic electrons exhibit a wide variety of propagation modes in the interplanetary medium, ranging from diffusive to essentially scatter-free. This variability in the propagation may be explained in terms of the distribution of interplanetary magnetic field fluctuations. Type III solar radio burst emission is generated by these electrons as they travel out to 1 AU and beyond. Recent in situ observations of these electrons at 1 AU, accompanied by simultaneous observations of the low frequency radio emission generated by them at 1 AU provide quantitative information on the plasma processes involved in the generation of type III bursts.  相似文献   

7.
Whistler-mode waves injected into the magnetosphere from ground sources (e.g., lightning discharge, vlf transmitters) are used to probe the distribution of ions and electrons in the magnetosphere. They also cause wave growth (vlf emissions) and precipitation of electrons. Bursts of X-rays (> 30 keV) and enhancements of D-region ionization are examples of precipitation effects caused by lightning-generated waves. Growing narrowband wave trains are triggered by manmade coherent waves. Growth rates of 100 dB s-1 and total growths up to 30 dB have been measured using 5.5 kHz signals transmitted from Siple Station, Antarctica. Another source of coherent wave input to the magnetosphere are the harmonics from commercial power line systems. Power line harmonic radiation may suppress triggered emissions or change their frequency-time slope. Exponential growth of narrowband emissions is explained in terms of cyclotron resonance between the waves and trapped energetic electrons, with feedback included. Applications of wave injection experiments include: (1) study of emission mechanisms, (2) control of energetic particle precipitation, (3) diagnostics of cold and hot plasma, and (4) vlf communications.  相似文献   

8.
We review radio detection of planetary lightning performed by Voyager, Galileo (including in-situ probe measurements), Cassini, and other spacecraft, and compare the information on the underlying physics derived from these observations—especially the discharge duration, at Jupiter and Saturn—with our knowledge of terrestrial lightning. The controversial evidence at Venus is discussed, as well as the prospects for lightning-like discharges in Martian dust-storms (and studies on terrestrial analogues). In addition, lightning sources provide radio beacons that allow us to probe planetary ionospheres. Ground-based observations of Saturn’s lightning have been attempted several times in the past and have been recently successful. They will be the subject of observations by the new generation of giant radio arrays. We review past results and future studies, focussing on the detection challenges and on the interest of ground-based radio monitoring, in conjunction with spacecraft observations or in standalone mode.  相似文献   

9.
The first measurements of plasma waves and wave-particle interactions in the magnetospheres of the outer planets were provided by instruments on Voyager 1 and 2. At Jupiter, the observations yielded new information on upstream electrons and ions, bow shock dissipation processes, trapped radio waves in the magnetospheres and extended Jovian magnetotail, pitch angle diffusion mechanisms and whistlers from atmospheric lightning. Many of these same emissions were detected at Saturn. In addition, the Voyager plasma wave instruments detected dust particles associated with the tenuous outer rings of Saturn as they impacted the spacecraft. Most of the plasma wave activity at Jupiter and Saturn is in the audio range, and recordings of the wave observations have been useful for analysis.  相似文献   

10.
The Cassini mission provides a great opportunity to enlarge our knowledge of atmospheric electricity at the gas giant Saturn. Following Voyager studies, the RPWS (Radio and Plasma Wave Science) instrument has measured again the so-called SEDs (Saturn Electrostatic Discharges) which are the radio signature of lightning flashes. Observations by Cassini/ISS (Imaging Science Subsystem) have shown cloud features in Saturn’s atmosphere whose occurrence, longitudinal drift rate, and brightness were strongly related to the SEDs. In this paper we will review the main physical parameters of the SEDs. Lightning does not only give us clues about the dynamics of the atmosphere, but also serves as a natural tool to investigate properties of Saturn’s ionosphere. We will also discuss other lightning related phenomena and compare Saturn lightning with terrestrial and Jovian lightning.  相似文献   

11.
R. P. Lin 《Space Science Reviews》2006,124(1-4):233-248
Observations of hard X-ray (HXR)/γ-ray continuum and γ-ray lines produced by energetic electrons and ions, respectively, colliding with the solar atmosphere, have shown that large solar flares can accelerate ions up to many GeV and electrons up to hundreds of MeV. Solar energetic particles (SEPs) are observed by spacecraft near 1 AU and by ground-based instrumentation to extend up to similar energies, but it appears that a different acceleration process, one associated with fast Coronal Mass Ejections (CMEs) is responsible. Much weaker SEP events are observed that are generally rich in electrons, 3He, and heavy elements. The energetic particles in these events appear to be similar to those accelerated in flares. The Ramaty High Energy Solar Spectroscopic Imager (RHESSI) mission provides high-resolution spectroscopy and imaging of flare HXRs and γ-rays. The observations of the location, energy spectra, and composition of the flare accelerated energetic particles at the Sun strongly imply that the acceleration is closely related to the magnetic reconnection that releases the energy in solar flares. Here preliminary comparisons of the RHESSI observations with observations of both energetic electrons and ions near 1 AU are reviewed, and the implications for the particle acceleration and escape processes are discussed.  相似文献   

12.
Both the Ulysses and Galileo spacecraft detected energetic electrons and Langmuir waves that were associated with a type III radio burst on 10 December 1990. At the time of these observations, these spacecraft were in the ecliptic plane and separated by 0.4 AU, with Galileo near the Earth at 1 AU and Ulysses at 1.36 AU. From the measured electron arrival times, the propagation path lengths of the electrons to both Ulysses and Galileo were estimated to be significantly longer than the length of the Parker spiral. These long path lengths are interpreted as due to draping of the interplanetary magnetic field lines around a CME. The onset times of the Langmuir waves at Ulysses and Galileo coincided with the estimated arrival time of the 9 keV and 14 keV electrons, respectively.  相似文献   

13.
Gamma-ray observations from HINOTORI satellite and possible neutron observations from the Tokyo neutron monitor are reviewed. Time histories of gamma-ray and X-ray emissions for both typical impulsive and gradual flares are discussed in connection with the particle acceleration time. The gamma-ray spectral hardening observed around 400 keV is explained from superimposition of two different electron bremsstrahlung spectra. Proton-energy spectra derived from the gamma-ray observations are compared with the solar energetic particle spectra in interplanetary space. The weak correlation between the gamma-ray fluence and the proton flux is discussed in connection with the particle trapping and escaping in the flare region. The limb darkening of the 2.22 MeV line resulting from neutron-proton capture is interpreted in terms of the attenuation by the Compton scattering in the photosphere. Possible solar neutron events recorded by the Tokyo neutron monitor are presented and the correlation between the gamma-ray fluence and the neutron fluence are described.  相似文献   

14.
The planetary radio astronomy experiment will measure radio spectra of planetary emissions in the range 1.2 kHz to 40.5 MHz. These emissions result from wave-particle-plasma interactions in the magnetospheres and ionospheres of the planets. At Jupiter, they are strongly modulated by the Galilean satellite Io.As the spacecraft leave the Earth's vicinity, we will observe terrestrial kilometric radiation, and for the first time, determine its polarization (RH and LH power separately). At the giant planets, the source of radio emission at low frequencies is not understood, but will be defined through comparison of the radio emission data with other particles and fields experiments aboard Voyager, as well as with optical data. Since, for Jupiter, as for the Earth, the radio data quite probably relate to particle precipitation, and to magnetic field strength and orientation in the polar ionosphere, we hope to be able to elucidate some characteristics of Jupiter auroras.Together with the plasma wave experiment, and possibly several optical experiments, our data can demonstrate the existence of lightning on the giant planets and on the satellite Titan, should it exist. Finally, the Voyager missions occur near maximum of the sunspot cycle. Solar outburst types can be identified through the radio measurements; when the spacecraft are on the opposite side of the Sun from the Earth we can identify solar flare-related events otherwise invisible on the Earth.  相似文献   

15.
The Konus-W experiment to be flown on board the GGS-Wind spacecraft is designed to observe gamma-ray bursts and solar flares with moderate spectral and high time resolution. Two large scintillators are used to provide omnidirectional sensitivity. The primary scientific objectives are the study of the continuum energy spectra and spectral features of these events in the energy range of 10 keV to 10 MeV, as well as their time histories in soft, medium, and hard energy bands, with a time resolution to 2 ms.  相似文献   

16.
The scope of observational astronomy in the gamma-ray region of the spectrum is vast. The intimate relationship of these energetic photons with their parent particles and fields provides a direct probe of the high-energy physics phenomena which take place throughout the Universe. As an added bonus the gamma-ray domain contains a wealth of diagnostic information within discrete emission lines, which are derived from a variety of processes including nuclear de-excitation, cyclotron emission, and matter-antimatter annihilation. Consequently observational gamma-ray astronomy addresses directly some of the most fundamental problems in both physics and astrophysics. However, low-energy gamma-rays are the most penetrating photons encountered in nature, and, whilst this factor provides a deep probe of cosmic objects, it ensures that gamma-ray telescopes are massive, both in terms of the stopping power required in the detector systems as well as their shields. Furthermore, the intimate relationship of gamma-rays with nuclear de-excitations ensures that the telescope itself becomes a bright source of background noise, a factor which is aggravated by the necessity that gamma-ray telescopes are obliged to operate in regions pervaded by intense particle fluxes. The background noise experienced in gamma-ray telescopes is, therefore, both high and extremely complex in its origin, and due to the high-energy content of individual photons, their numbers which arrive from distant cosmic sources are necessarily low, even for those objects which radiate the bulk of their power at gamma-ray wavelengths. Current gamma-ray telescopes are thus obliged to operate under conditions of intrinsically low signal-to-noise ratio and it is vital that techniques are developed which reduce the background noise level to more acceptable levels, thus improving the sensitivity. To achieve such a goal, a thorough understanding of the sources of background noise is first required before effective measures can be taken for its reduction.In this paper the sources of background noise are reviewed with the aim to obtain a quantitative analysis of individual contributions, as derived from the various classes of irradiative particle fluxes. The estimated contributions from the individual sources are combined in order to evaluate the total background level of a given telescope in a specific radiation environment, which for practical considerations generally relates to the orbit choice and detailed design of the telescope. The published background noise spectra of a number of past missions are compared to the computed values so as to provide an assessment of the validity of the overall calculations. The level of agreement achieved indicates that a good understanding of the sources of background noise exists. Finally some possibilities for the improvement of the sensitivity of future gammaray telescopes, in terms of the reduction of the background noise, are discussed.  相似文献   

17.
The Suprathermal Electron (STE) instrument, part of the IMPACT investigation on both spacecraft of NASA’s STEREO mission, is designed to measure electrons from ~2 to ~100 keV. This is the primary energy range for impulsive electron/3He-rich energetic particle events that are the most frequently occurring transient particle emissions from the Sun, for the electrons that generate solar type III radio emission, for the shock accelerated electrons that produce type II radio emission, and for the superhalo electrons (whose origin is unknown) that are present in the interplanetary medium even during the quietest times. These electrons are ideal for tracing heliospheric magnetic field lines back to their source regions on the Sun and for determining field line lengths, thus probing the structure of interplanetary coronal mass ejections (ICMEs) and of the ambient inner heliosphere. STE utilizes arrays of small, passively cooled thin window silicon semiconductor detectors, coupled to state-of-the-art pulse-reset front-end electronics, to detect electrons down to ~2 keV with about 2 orders of magnitude increase in sensitivity over previous sensors at energies below ~20 keV. STE provides energy resolution of ΔE/E~10–25% and the angular resolution of ~20° over two oppositely directed ~80°×80° fields of view centered on the nominal Parker spiral field direction.  相似文献   

18.
The paper is devoted to the present crisis in the field of cosmic gamma-ray bursts. There are two different paradigms of the phenomenon, which have practically equal numbers of supporters. The cosmological one associates bursts with collisions of compact objects at distances up to those with red-shifts of about 1–2. The galactic paradigm assumes that bursts are generated by neutron stars in the extended galactic halo. The present situation is shown to be very close to the ultimate establishment of the paradigm of the origin of cosmic gamma-ray bursts.  相似文献   

19.
This book concerns the publication of the proceedings of an IAU Symposium held in Tokio in the summer of 1997. As implied by the title, it provides an overall review of our knowledge on all aspects of high-energy phenomena occurring in the universe obtained via the observations in X- and gamma-rays with orbiting satellites. It contains 44 invited (4 pages each) and 132 (2 pages each) contributed papers covering: Sun, stars, supernovae and their remnants, galaxies and their clusters, white dwarfs and neutron stars, black hole binaries, active galactic nuclei, gamma-ray bursts, large scale structure and hot intergalactic medium, and a chapter on future space programs in X- and gamma-ray astronomy. Many of the contributions have since appeared in the astronomical literature. The invited reviews, although very concise, are generally valuable in presenting the most relevant points of the various subjects. The book is for professional astronomers and may serve as a quick and very useful reference to becoming acquainted with the main developments in the field of high-energy astrophysics beginning of 1998. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
The role of a new mode coupling effect (plasma-maser) in space plasma physics is reviewed. The new maser effect, the idea that the resonant electrons with the low-frequency mode can amplify the high-frequency mode, does not require population inversion of electrons. The generation mechanisms of ULF modulated ELF emissions, auroral kilometric radiation, chorus related electrostatic bursts, whistler mode in the solar wind, and type III solar radio bursts are studied based on plasma-maser effect. The forced plasma-maser interaction model reduces to a conservative Lotka-Volterra system. A chaotic behavior of the forced Lotka-Volterra system is obtained. The new mode coupling process has potential importance in attempting to interpret numerous astrophysical radio phenomena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号