首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is widely accepted that the prompt transient signal in the 10 keV–10 GeV band from gamma-ray bursts (GRBs) arises from multiple shocks internal to the ultra-relativistic expansion. The detailed understanding of the dissipation and accompanying acceleration at these shocks is a currently topical subject. This paper explores the relationship between GRB prompt emission spectra and the electron (or ion) acceleration properties at the relativistic shocks that pertain to GRB models. The focus is on the array of possible high-energy power-law indices in accelerated populations, highlighting how spectra above 1 MeV can probe the field obliquity in GRB internal shocks, and the character of hydromagnetic turbulence in their environs. It is emphasized that diffusive shock acceleration theory generates no canonical spectrum at relativistic MHD discontinuities. This diversity is commensurate with the significant range of spectral indices discerned in prompt burst emission. Such system diagnostics are now being enhanced by the broad-band spectral coverage of bursts by the Fermi Gamma-Ray Space Telescope; while the Gamma-Ray Burst Monitor (GBM) provides key diagnostics on the lower energy portions of the particle population, the focus here is on constraints in the non-thermal, power-law regime of the particle distribution that are provided by the Large Area Telescope (LAT).  相似文献   

2.
After more than six and half years in orbit, the ESA space observatory INTEGRAL has provided new, exciting results in the soft gamma-ray energy range (from a few keV to a few MeV). With the discovery of about 700 hard X-Ray sources, it has changed our previous view of a sky composed of peculiar and “monster” sources. The new high energy sky is in fact full of a large variety of normal, very energetic emitters, characterized by new accretion and acceleration processes (see also IBIS cat4 (Bird et al., 2010). At the same time, about one GRB/month is detected and imaged by the two main gamma-ray instruments on board: IBIS and SPI. In this paper, we review the major achievements of the INTEGRAL observatory in the field of Gamma-Ray Bursts. We summarize the global properties of Gamma-Ray Bursts detected by INTEGRAL, with respect to their duration, spectral index, and peak flux distributions. We recall INTEGRAL results on the spectral lag analysis, showing how long-lag GRBs appear to form a separate population at low peak fluxes. We review the outcome of polarisation studies performed by using INTEGRAL data. Finally, concerning single GRB studies, we highlight the properties of particularly interesting Gamma-Ray Bursts in the INTEGRAL sample.  相似文献   

3.
A summary is given of the presentations at the COSPAR workshop on γ-ray bursts with some personal commentary on the contributions, the SN/GRB connection, and on the role of magnetic fields in γ-ray bursts and their afterglows. Of special interest were the accumulated arguments for strong collimation and associated reduction in the total required energy for γ-ray bursts. Significant discussion was also devoted to the issues associated with iron and metal lines in X-ray spectra. It is important to note that some of the afterglows seem to require ambient densities 1 g cm−3, rather incompatible with a massive star environment. Of associated difficulty is the fact that few, if any, afterglows seem consistent with the r−2 wind expected for a massive star model. There are reasons to think that if γ-ray bursts are associated with supernovae they are of Type Ic. This suggests that any wind present might be rich in carbon and oxygen, not hydrogen or helium. If γ-ray bursts are narrowly collimated, then the burst is only probing a small portion of any wind, perhaps just that time-dependent and isotropic structure directly along the rotation axis. The characteristics of “hypernovae” may be the result of orientation effects in a mildly inhomogeneous set of progenitors, rather than requiring an excessive total energy or luminosity. The recent event GRB 021004 provided a rich photometric and spectroscopic record and perhaps the most direct evidence yet for the association of a specific γ-ray burst with a massive star progenitor. If the magnetic field plays a significant role in launching a relativistic γ-ray burst jet from within a collapsing star, then the magnetic field may also play a role in the propagation, collimation, and stability of that jet within and beyond the star. The magneto-rotational instability (MRI) can operate under conditions of moderate rotation. This means that the MRI will be at work generating strong fields exponentially rapidly even as the disk of material begins to form and makes a transition from a non-Keplerian to quasi-Keplerian flow in the collapsar and related models.  相似文献   

4.
We present results from Swift, XMM-Newton, and deep INTEGRAL monitoring in the region of GRB 050925. This short Swift burst is a candidate for a newly discovered soft gamma-ray repeater (SGR) with the following observational burst properties: (1) galactic plane (b = −0.1°) localization, (2) 150 ms duration, and (3) a blackbody rather than a simple power-law spectral shape (with a significance level of 97%). We found two possible X-ray counterparts of GRB 050925 by comparing the X-ray images from Swift XRT and XMM-Newton. Both X-ray sources show the transient behavior with a power-law decay index shallower than −1. We found no hard X-ray emission nor any additional burst from the location of GRB 050925 in ∼5 ms of INTEGRAL data. We discuss about the three BATSE short bursts which might be associated with GRB 050925, based on their location and the duration. Assuming GRB 050925 is associated with the HII regions (W 58) at the galactic longitude of l = 70°, we also discuss the source frame properties of GRB 050925.  相似文献   

5.
中法天文卫星(SVOM)伽玛暴联合探测任务   总被引:1,自引:0,他引:1  
中法天文卫星SVOM是中法两国合作的伽玛暴探测任务,由中国国家航天局(CNSA)和法国国家空间研究中心(CNES)批准立项,中国科学院负责总体研制.SVOM是继美国SWIFT任务之后最重要的伽玛暴多波段探测项目,是一颗功能强大的天文卫星,具有多波段观测、快速机动、灵活操作及地面后随观测能力.SVOM将开创一个非常广阔的探测领域.本文介绍了项目组织、任务目标、卫星和有效载荷、地面段以及运控概念.   相似文献   

6.
Time-dependent thermal X-ray spectra are calculated from physically plausible conditions around GRB. It is shown that account for time-dependent ionization processes strongly affects the observed spectra of hot rarefied plasma. These calculations may provide an alternative explanation to the observed X-ray lines of early GRBs afterglows (such as GRB 011211). Our technique will allow one to obtain independent constraints on the GRB collimation angle and on the clumpiness of circumstellar matter.  相似文献   

7.
The detailed study of the spectral evolution during the steep decay phase of early X-ray light curves of gamma-ray bursts (GRBs) is a very important task that can give us information on different emission components contributing to the prompt-to-afterglow transition and help to understand the link between these two stages. Time resolved spectral analysis of bright GRBs detected by Swift has shown that a good modeling of the early X-ray light curves can be obtained with Band or cut-off power-law broad band spectra with evolving parameters (e.g., decaying peak energy). We developed a procedure to simultaneously fit the temporal evolution of all the spectral parameters of a GRB during the prompt-to-afterglow transition based on the analysis of the Swift Burst Alert Telescope (BAT) and the Swift X-ray Telescope (XRT) count rate and hardness ratio light curves. The procedure has been tested on GRB 060614 and GRB 090618, two very peculiar bright GRB detected by Swift that show a long exponentially decaying tail with strong softening and peak energy crossing the XRT energy band.  相似文献   

8.
We present the preliminary results of a systematic search for GRB and other transients in the publicly available data for the IBIS/PICsIT (0.2–10 MeV) detector on board INTEGRAL. Lightcurves in 2–8 energy bands with time resolution from 1 to 62.5 ms have been collected and an analysis of spectral and temporal characteristics has been performed. This is the nucleus of a forthcoming first catalog of GRB observed by PICsIT.  相似文献   

9.
Gamma-Ray Bursts (GRBs) are the most energetic and most relativistic phenomenon in the Universe. Understanding the nature of their progenitors has been one of the primary efforts of current research in high energy astrophysics, and their unmatched luminosity and other properties makes them ideal cosmological probes. In this contribution, I review the observational effects resulting from the interaction between the longer wavelength radiation accompanying GRBs and their close environment. In particular, it discusses signatures that, in addition to providing powerful clues on the GRB progenitors, can also shed light on the physical characteristics, such as metallicity and dust content, of the GRB host galaxies.  相似文献   

10.
An increasing sample of Gamma-Ray Bursts (GRBs) observed by Swift show evidence of ‘chromatic breaks’, i.e. breaks that are present in the X-ray but not in the optical. We find that in a significant fraction of these GRB afterglows the X-ray and the optical emission cannot be produced by the same component. We propose that these afterglow lightcurves are the result of a two-component jet, in which both components undergo energy injection for the whole observation and the X-ray break is due to a jet break in the narrow outflow. Bursts with chromatic breaks also explain another surprising finding, the paucity of late achromatic breaks. We propose a model that may explain the behaviour of GRB emission in both X-ray and optical bands. This model can be a radical and noteworthy alternative to the current interpretation for the ‘canonical’ XRT and UVOT lightcurves, and it bears fundamental implications for GRB physics.  相似文献   

11.
The error box of GRB980425 has been observed by XMM-Newton in March 2002, with the aim of measuring the late epoch X-ray emission of the supernova 1998bw and of clarifying its supposed association with the GRB itself. We present here the preliminary results obtained with the EPIC PN camera. Our observations confirm the association between SN 1998bw and GRB980425. The EPIC PN measurement of the SN 1998bw flux is significantly below the extrapolation of the power-law temporal trend fitted to the BeppoSAX points and implies a faster temporal decay. We propose different physical interpretations of the SN X-ray light curve, according to whether it is produced by one or more radiation components.  相似文献   

12.
The detection of a bright optical emission measured with good temporal resolution during the prompt phase makes GRB 060111B a rare event that is especially useful for constraining theories of the prompt optical emission. Comparing this burst with other GRBs with evidence of optical peaks, we find that the optical peak epoch (tp) is anti-correlated with the high energy burst energetic assuming an isotropic energy release (Eiso) in agreement with Liang et al. (2009), and that the steeper is the post-peak afterglow decay, the less is the agreement with the correlation. GRB 060111B is among the latters and it does not match the correlation. The Cannonball scenario is also discussed and we find that this model cannot be excluded for GRB 060111B.  相似文献   

13.
The EMBH model, previously developed using GRB 991216 as a prototype, is here applied to GRB 980425. We fit the luminosity observed in the 40–700 keV, 2–26 keV and 2–10 keV bands by the BeppoSAX satellite. In addition we present a novel scenario in which the supernova SN1998bw is the outcome of an “induced gravitational collapse” triggered by GRB 980425, in agreement with the GRB-Supernova Time Sequence (GSTS) paradigm [Ruffini, R., Bianco, C.L., Chardonnet, P., Fraschetti, F., Xue, S.-S. On a possible GRB-supernova time sequence. Astrophys. J. 555, L117–L120, 2001c]. A further outcome of this astrophysically exceptional sequence of events is the formation of a young neutron star generated by the SN1998bw event. A coordinated observational activity is recommended to further enlighten the underlying scenario of this most unique astrophysical system.  相似文献   

14.
In the present work the possibility of the fractal analysis application for GRB temporal profiles was studied. We have analysed the 4B revised BATSE catalog: temporal profiles of GRB with t90 < 3 s (287 short and 100 intermediate) were studied on TTE data, a sample of 278 intermediate GRB with t90  3 s were studied on DISCSC data. An analysis of the background fractal dimension distributions obtained using TTE and DISCSC data (143 and 110 background regions, respectively), indicates that for both datasets background fractal dimensions Dbgr = 1.5 that the fractal dimension distributions obtained by using these data can be processed simultaneously. The change of the fractal index Dbgr for Poisson statistics – dominated sets with different coefficients of error in counting (up to 10) was studied and Dbgr = 1.5. The ranges of fractal dimension (0.80  D  2.25 for short and 0.85  D  2.01 for intermediate GRB) are shifted over range for theoretical fractal curve (1 < D < 2) due to the finite detector time resolution. There are four subgroups in fractal dimension distribution for short GRB (D = 1.05 ± 0.03, D = 1.31 ± 0.05, D = 1.51 ± 0.04, D = 1.90 ± 0.03) and six subgroups for intermediate one (D = 1.05 ± 0.09, D = 1.24 ± 0.08, D = 1.44 ± 0.07, D = 1.51 ± 0.08, D = 1.64 ± 0.07, D = 1.91 ± 0.1). Time profiles with fractal dimension smaller then background can be obtained by using models with many short chaotic processes in sources, for example, fireball model with shock waves. The range of fractal dimensions for the modelled temporal profiles is 1.213  D  1.400, which can correspond to subgroups of short and intermediate GRB with D = 1.31 and D = 1.24; moreover, the fractal dimension of a simulated indented event and GRB990208 are equal within the error limits for some model parameters and it is possible to obtain smooth temporal profiles with D = Dbgr.  相似文献   

15.
We review the notion that some extragalactic giant magnetar flares could be mistaken for short cosmic gamma-ray bursts. There are at least two general ways to approach this problem. One is statistical, while the other considers individual bursts. Both methods appear to agree that extragalactic flares can be, and indeed are, present in the short burst population, although the rate of such events remains uncertain. The statistical studies all suggest a rate of ∼1–15% in the short GRB sample.  相似文献   

16.
Since it is not possible to predict when a Gamma-Ray Burst (GRB) will occur or when Active Galactic Nucleus (AGN) flaring activity starts, follow-up/monitoring ground telescopes must be located as uniformly as possible all over the world in order to collect data simultaneously with Fermi and Swift detections. However, there is a distinct gap in follow-up coverage of telescopes in the eastern U.S. region based on the operations of Swift. Motivated by this fact, we have constructed a 14″ fully automated optical robotic telescope, Goddard Robotic Telescope (GRT), at the Goddard Geophysical and Astronomical Observatory. The aims of our robotic telescope are (1) to follow-up Swift/Fermi GRBs and (2) to perform the coordinated optical observations of Fermi Large Area Telescope (LAT) AGN. Our telescope system consists of off-the-shelf hardware. With the focal reducer, we are able to match the field of view of Swift narrow instruments (20′ × 20′). We started scientific observations in mid-November 2008 and GRT has been fully remotely operated since August 2009. The 3σ upper limit in a 30 s exposure in the R filter is ∼15.4 mag; however, we can reach to ∼18 mag in a 600 s exposures. Due to the weather condition at the telescope site, our observing efficiency is 30–40% on average.  相似文献   

17.
The COMPTEL experiment on the Compton Gamma-Ray Observatory is designed to image celestial gamma radiation in the energy range from 0.75–30 MeV within a field of view of 1 steradian. It can locate stronger point sources with an accuracy better than 0.5° and is capable of mapping diffuse emission as well. The Galactic-center region was observed by COMPTEL for several 2-week periods in 1991/1992. These observations show evidence for 1.8 MeV line emission along the Galactic disk (attributed to radioactive 26Al), extending over at least 40 degrees in longitude.  相似文献   

18.
Coronal hole jets are fast ejections of plasma occurring within coronal holes, observed at Extreme-UltraViolet (EUV) and X-ray wavelengths. Recent observations of jets by the STEREO and Hinode missions show that they are transient phenomena which occur at much higher rates than large-scale impulsive phenomena like flares and Coronal Mass Ejections (CMEs). In this paper we describe some typical characteristics of coronal jets observed by the SECCHI instruments of STEREO spacecraft. We show an example of 3D reconstruction of the helical structure for a south pole jet, and present how the angular distribution of the jet position angles changes from the Extreme-UltraViolet-Imager (EUVI) field of view to the CORonagraph1 (COR1) (height ∼2.0 R heliocentric distance) field of view. Then we discuss a preliminary temperature determination for the jet plasma by using the filter ratio method at 171 and 195 Å and applying a technique for subtracting the EUV background radiation. The results show that jets are characterized by electron temperatures ranging between 0.8 and 1.3 MK. We present the thermal structure of the jet as temperature maps and we describe its thermal evolution.  相似文献   

19.
Observations of the prompt afterglow of γ-ray burst events are unanimously considered of paramount importance for GRB science and cosmology. Such observations at NIR wavelengths are even more promising allowing the monitoring of high-z Ly- absorbed bursts as well as events occurring in dusty star-forming regions. In these pages we present rapid eye mount (REM), a fully robotized fast slewing telescope equipped with a high throughput NIR (Z, J, H, K) camera dedicated to detecting the prompt IR afterglow. REM can discover objects at extremely high redshift and trigger large telescopes to observe them. The REM telescope will simultaneously feed REM optical slitless spectrograph (ROSS) via a dichroic. ROSS will intensively monitor the prompt optical continuum of GRB afterglows. The synergy between the REM-IR camera and the ROSS spectrograph makes REM a powerful observing tool for any kind of fast transient phenomena. Beside its ambitious scientific goals, REM is also technically challenging since it represent the first attempt to locate a NIR camera on a small telescope providing, with ROSS, unprecedented simultaneous wavelength coverage on a telescope of this size.  相似文献   

20.
Accurate measurement of the leaf to air temperature gradient is crucial for the determination of stomatal conductance and other plant responses in both single leaves and in plant canopies. This gradient is often less than 1 degree C, which means that leaf temperature must be known to within about +/- 0.1 degree C. This is a challenging task, but new, miniature infra-red transducers from Exergen Corporation (Newton, MA) and Everest Interscience (Tucson, AZ) can be modified and calibrated to achieve this accuracy. The sensors must be modified to add thermal mass and the Exergen sensor requires a measurement of sensor body temperature. Significant error is caused by the discharge of a capacitor in the standard Exergen sensor, but we tested it without the capacitor. The sensors respond rapidly to changes in target temperature, but require 2 to 10 minutes to respond to changes in sensor body temperature, which is often the largest source of error. A new, sensitive method for measuring field of view indicates substantial peripheral vision for both sensors and a wider field of view than specified by the manufacturers. Here we describe sensor output as a function of target and sensor body temperatures, and provide a generic (sensor independent) equation that can be used to achieve +/- 0.2 C accuracy with Exergen sensors. The equation was developed and verified using two black body calibrators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号