首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
A Controllable and Observable Protein Crystallization Facility (ACOP) was developed in 1999 for space experiment in the Get Away Special canister of Space Shuttle. To regulate the vapor diffusion rate, in a crystallization chamber, five cells each containing precipitant solution of different concentrations, exposed to one protein cell in turn. Five layers of chambers were overlapped coaxially. The crystallization process was observed and recorded by digital cameras. Structure of facility and result of image sequence were given.  相似文献   

2.
This paper reports on the progress made in the development of the Netherlands Protein Crystallization Facility. The facility allows two crystallization techniques: Vapour diffusion and micro-dialysis. The design and development is accompanied by a project in which it tried to model and simulate the events which occur during the vapour diffusion process within the crystallization cell.  相似文献   

3.
微颗粒表面磁控溅射镀金属膜实验   总被引:1,自引:0,他引:1  
采用磁控溅射方法,成功地在微颗粒表面沉积了金属铜膜和金属镍膜.利用光学显微镜(OM)、场发射扫描电子显微镜(FESEM)、能谱仪(EDS)、多功能扫描探针显微镜(SPM)、电感耦合等离子体发射光谱仪(ICP-AES)和光电子能谱仪(XPS)等测试仪器对其表面形貌、膜厚和组份进行了表征.重点讨论了不同的沉积条件对薄膜结晶的影响,并用X射线衍射仪(XRD)对其进行了表征.结果表明,溅射镀膜时,通过控制微颗粒的运动方式,可以在微颗粒表面镀上均匀性好、附着力强和致密性好的金属膜.溅射时间越长或溅射功率越大或装载量越少,都有利于薄膜结晶.   相似文献   

4.
A method based on the Lyapunov stability theory has been developed for studying the stability of crystallization by capillary shaping techniques (including Czochralski, Stepanov, EFG, Verneuil and floating zone methods). The preliminary results of the analysis of stability shows that the crystallization by capillary shaping technique under microgravitation conditions is more stable in some cases than under the action of gravitation. To get deeper into details of the capillary shaping technique under microgravitation conditions, we have carried out model experiments using two immiscible liquids of equal density and crystallization of sapphire in terrestrial conditions with small Bond number. The experiments on the copper crystallization were realized in the high-altitude rockets. Our experiments on indium crystallization carried out in the orbital space probe “Salyut” yielded cylindrical specimens.  相似文献   

5.
采用X-elax射线衍射技术研究蛋白质分子结构与功能的必要前提是获得高质量的蛋白质晶体.空间微重力环境是生长优质蛋白质晶体的理想场所.蛋白质样品的加载工艺对于空间蛋白质结晶实验的成效具有重要影响.针对为神舟八号飞船空间实验新研制的毛细管式空间蛋白质结晶室,结合样品加载基本流程,对加载工艺和伴随的气泡缺陷问题进行了系统和深入分析,确定了针头形状、毛细管封口质量和硅化效果、样品加载工具以及毛细管夹持方式等影响因素,并获得了实验测试验证.在此基础上,通过改进毛细管烧制工艺和样品加载工具,研制和使用专用毛细管夹具等措施,简化了蛋白质样品加载工艺,消除了气泡缺陷,提高了加载效率.新工艺的实施保证了空间实验任务的顺利完成.   相似文献   

6.
利用差示扫描量热仪(DSC)、X射线衍射(XRD)、透射电镜(TEM)研究了稀土元素(RE)对Al-Ni-Gd-Y非晶合金晶化行为的影响.Al-Ni-Gd-Y非晶合金的初始晶化温度随着稀土元素含量的增加而升高.在Al(88-x)Ni6Gd6Y x ( x =1,2,3,4)系中,随着Y含量的增加,初始晶化产物由面心立方Al(fcc-Al)变成为fcc-Al+Al3Gd/Al3Y+未知相.研究了热处理工艺对Al86Ni8Gd3Y3合金力学性能的影响,其中,当Al86Ni8Gd3Y3在568K下保温10min时,其显微硬度及韧性较高,析出尺寸为1~3nm的fcc-Al纳米晶颗粒.  相似文献   

7.
溶液法制备PVDF薄膜电活性相方法   总被引:4,自引:4,他引:0  
为了制备具有电活性相的聚偏氟乙烯(PVDF)薄膜,采用了简单易操作的溶液涂膜方法,并研究了不同前驱体溶液浓度、搅拌时间以及热压工艺对PVDF不同电活性相的晶型结构形成的影响,利用X射线衍射仪、傅里叶变换红外光谱仪(FTIR)对PVDF薄膜的晶型结构进行分析.结果表明:前驱体溶液浓度7%~10%,搅拌时间2~3h都有利于β相的形成,利用红外光谱,可以计算β相的含量,在前驱体溶液浓度7%,搅拌时间2h时得到最大的β相含量81.3%;热压对PVDF薄膜的晶型结构有很大的影响,经过热压处理的PVDF薄膜中γ相转变成更加致密的β相.   相似文献   

8.
在长期空间飞行过程中, 骨质丢失是一个严重问题. 羟基磷灰石(HAP)晶体是骨骼的主要成分, 骨骼中的胶原蛋白纤维在HAP生长结晶过程中起到关键作用. 研究了胶原蛋白纤维化过程在模拟微重力和常重力条件下的变化, 对以胶原 蛋白纤维作为模板生长出的HAP晶体形貌进行了观察. 结果表明, 不同浓度胶原蛋白溶液中形成的胶原蛋白纤维, 其内部孔隙数量和尺寸在模拟微重力条件下要明显大于常重力条件下, 胶原蛋白纤维内部孔隙的分布也不同于常重力条 件下的结果. 以模拟微重力条件下形成的胶原蛋白纤维为模板生长出的HAP 晶体主要为立方体状, 而以常重力条件下形成的胶原蛋白纤维为模板生长出的 HAP晶体形貌主要为板状. 该结果有助于未来进一步阐明空间骨质丢失的机理.   相似文献   

9.
Using a new flight hardware, a Chinese mission of space protein crystallization has been performed on the Chinese spacecraft SZ-3 for seven days from March 25 to Apr. 1, 2002. The rate of yielding crystals in the 60 samples is 75%, a little higher than the ground control experiment. Preliminary analysis of the experimental results have shown that among the 16 proteins involved in the mission, about 4 kinds of better diffraction-quality protein crystals were produced in space. At least one kind of protein crystals, i.e. crystals of cytochrome b5 mutant could diffract X ray beyond the highest resolution reported so far. In addition, some rules derived from our numerical studies of the liquid/liquid diffusion protein crystallization were proved by the crystallization of lysozyme as model protein in this space experiment,which also clearly showed the advantages and disadvantages of the gelled protein solution used in microgravity growth of protein crystals. In order to exploit this mission, more diffraction work with the grown crystals and detailed analysis of data to be obtained will be done in the next few months.  相似文献   

10.
以快淬法制备了非晶态Co_(90~x)T_xZr_(10)(T=Cr,Mo,V,W;x=0,4,6,8,10,12)合金系列样品,并对其一些热和磁性能进行了测试研究,探讨了它们在磁强计上应用的可能性。结果表明,随着样品中T元素含量的增加,样品的晶化温度和晶化激活能升高,饱和磁化强度和居里温度下降,交流磁导率变化不大。退火处理对交流磁导率和损耗有较大影响。以现有理论对实验结果进行了分析。非晶态Co_(78)Cr_(12)Zr_(10)合金适于用作磁强计探头的磁芯材料,尤其是它良好的高频性能使磁强计测量的交流磁场的截止频率大干20kHz。  相似文献   

11.
Modelisation and solution of heat and mass transfer problems relevant for material processing are generally hard to be handled, as they often involve 3D unsteady flows, viscous mixtures, phase changes, moving liquid-solid fronts, deforming liquid-gas interfaces, etc.… For space applications, material processing benefits of reduced buoyancy convection but can be faced to a strongly increased complexity due to variable g, mainly in manned flight.

Computational techniques used to analyse fluid motions in material processing, accounting for free surface, crystallization front and bulk convection in melt, are reviewed with emphasis to directional crystallization. Hydrodynamics stability and bifurcation analysis are shown to be useful complementary tools for correlating data, and for a better understanding of the physical laws. This last point will be illustrated in the case of the onset of oscillations in metallic melts.  相似文献   


12.
In summary, it should be stated that the existing theories of segregation during directional crystallization which consider mass transport in melt due only to either concentration diffusion or convective stirring (or both) cannot account for solute segregation picture observed in solid solution crystals which have been obtained aboard Apollo-Soyuz orbital complex. To do this, some other, new models are required.  相似文献   

13.
用国产装置进行的空间蛋白质结晶实验   总被引:5,自引:0,他引:5  
使用国内研制的管式汽相扩散结晶装置,在我国返回式卫星上,成功地完成了两次空间蛋白质晶体生长实验,10种不同种类的蛋白质配制的48个样品在空间的出晶率分别达52%和80%,其中少数蛋白质生长出了较高质量的蛋白质晶体。结果表明,空间的微重力环境利于改善蛋白质晶体的生长,而且在结晶条件优化足够好的条件下,在空间里能生长出比地面晶体尺寸较大、形态较好和内部有序性较高的蛋白质晶体。本文还就微重力对蛋白质晶体生长的具体作用及其开发利用做了讨论。   相似文献   

14.
In this paper a method based on in situ measured reflectance spectra was developed for accurately mapping salt fields in the Taibei Salt Farm in Lianyungang City of East China. After radiometric correction and geometric rectification, six multispectral ETM+ bands were fused with the panchromatic band via principal components analysis (PCA). The fused data were used to map salt fields in the farm. Salt fields were mapped 91.95% correctly in comparison with ground statistics from raw multispectral bands. This accuracy level rose to 96.4% with the use of the panchromatic band (15 m resolution). However, PCA-fused data produced the highest accuracy of 98.8%. At the zone level, coarse resolution data resulted in an accuracy of 98.93% for crystallization ponds, but only 82.68% for condensation ponds. Use of the panchromatic band alone improved the accuracy for condensation ponds but decreased the accuracy for crystallization and evaporation ponds. Results derived from PCA-fused data are highly consistent with the ground statistics at a discrepancy between 0.35% for evaporation zone and 1.80% for condensation zone. It is concluded that a fine spectral resolution is important to separation of ponds of a varying salt content while a fine spatial resolution is important to their mapped area. Ponds of a lower salt content can be mapped more accurately from fused data than from raw spectral bands.  相似文献   

15.
研制出一种在晶化激光功率为4mW时晶化时间为180ns的可逆相变型光纪录介质。其擦写循环次数可达10~6次。分析了其快速晶化机理。  相似文献   

16.
工字钢结晶器内腔尺寸多维坐标测量机的设计   总被引:1,自引:0,他引:1  
介绍了一种测量工字钢结晶器内腔尺寸的专用测量机的结构、原理、功能及测量准确度。将硬件与软件有机地结合于一体 ,经软件处理后能自动给出测量结果。该测量机通过数控软件可自动控制测头的上下、左右移动及转动。由数据处理软件完成数据的处理、误差分离与修正等功能。采用大位移高准确度的光栅位移传感器能精确的测出测头X、Y及Z方向的位移量。  相似文献   

17.
Either a homogeneous or inhomogeneous magnetic field has been known to dampen the protein crystal growth. To date the mechanism is not clear. However, it was generally proposed that the magnetic field may dampen the convection in the solution, resulting in a reduced crystal growth rate and possibly a good crystal quality, similar to the case of protein crystal growth in space. To understand the mechanism of the magnetic field effect on protein crystal growth, further explorations on the magnetic field effect on protein solution, on the processes of crystal growth and dissolution, and on different crystallization (solution) systems, should be valuable. In this paper we present our recent efforts to study magnetic field effects on the dissolution processes of tetragonal lysozyme crystals under a strong magnetic field. A layer of oriented tetragonal lysozyme crystals was prepared under a temperature gradient and magnetic field, after that the crystals were dissolved by increasing the temperature of the solution. The lysozyme molecules will diffuse upwards due to the steep concentration gradient at the lower side of the cell caused by the dissolution. The evolution of the concentration in the solution was measured in-situ using a Mach-Zehnder interferometer. The results confirmed that the dissolution process of the crystals was slowed by the magnetic field. Judging from the concentration evolution versus time at different positions in the solution, we concluded that the apparent diffusion coefficient of lysozyme molecules was decreased by the magnetic field. The results were discussed using a suspended crystal model in the initial dissolution stage.  相似文献   

18.
During the 3rd mission of Chinese Unmanned Spacecraft the application sys tem of "SZ-3" (Shenzhou, a divine ship) gets a great success, all its goals are achieved. Many areas of science and breakthrough technology, including earth observation, earth environment monitoring, space material, space life science etc., are carried out in the mission. There are 44 payload instruments totally.All the instruments are working well during the orbit flight and a lot of good results are obtained. Many areas, for example the moderate resolution imag ing spectroradiometer, the solar ultraviolet spectral irradiance monitor and the space protein crystallization facility perform better than required and expected.A brief introduction of the experiments and the achievements of the mission is given in this paper.  相似文献   

19.
Space and clinostatic experiments revealed that changes of plant cell wall structure and its function depend on type of tissue and duration of influence. It was shown that clinostat conditions reproduce the part of weightlessness biological effects. It is established that various responses of wall structural-metabolic organization occur at microgravity: changes of cell walls ultrastructure and organelles structure; decrease of synthesis of primary plant cell wall; rearrangements of polysaccharides content. It is shown that mechanisms of plant cell wall changes at microgravity are connected with decrease of cellulose crystallization, activation of pectolytic enzymes and rearrangement of calcium balance of apoplast and cytoplasm.  相似文献   

20.
Chinese scientists studied some of the problems in the field of space life science and achieved success in the area during 2000-2001. Space biological experi ments were carried out in the orbit and the results of ground studies on protein crystallization, space radiation, space motion sickness were introduced in this paper. The influences of simulated weightlessness on the brain-function, the car diovascular, endocrine hormones, immunity, skeletal and muscle systems were presented. In addition, gravity medicine and space environment medicine, as well as countermeasures to space deconditioning, such as the traditional Chinese medicine, were also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号