首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Ulysses spacecraft has been the first to orbit the Sun over its poles and to explore the heliosphere at these high heliolatitudes. It has now completed two fast latitude scans, one at solar minimum and one at solar maximum. Since its launch in October 1990, this mission has led to several surprising discoveries concerning energetic particles, cosmic rays, Jovian electrons, the solar wind, the heliospheric magnetic field and the global features of the heliosphere. This review addresses mainly the propagation and modulation of cosmic rays and other charged particles, from both an observational and theoretical point of view, with emphasis on what has been learned from exploring the inner heliosphere to high heliolatitudes. This is done for solar minimum and maximum conditions. The review is concluded with a summary of the main scientific discoveries and insights gained so far from the Ulysses mission.  相似文献   

2.
The combination of Voyager 1 (77.9 AU, 34.4° N) and Voyager 2 (61.2 AU, 24.5° S) at moderate heliolatitudes in the distant heliosphere and Ulysses with its unique latitudinal surveys in the inner heliosphere along with IMP 8 and other satellites at 1 AU constitutes a network of observatories that are ideally suited to study cosmic rays over the solar minimum of cycle 22 and the onset of solar activity and the long term cosmic ray modulation of cycle 23. Through 2000.7 there have been three well-defined step decreases in the cosmic ray intensity at 1 AU with the cumulative effect being in good agreement with the net decrease in cycle 21 at a comparable time in the solar cycle. Over this period the intensity changes at Ulysses are similar to those at 1 AU. In the distant heliosphere the initial decreases appear to be smaller than those at 1 AU. However the full effects of the interplanetary disturbances producing the most recent and largest step decrease in the inner heliosphere have not yet reached V-2. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
Jokipii  J.R.  Giacalone  J. 《Space Science Reviews》1998,83(1-2):123-136
Anomalous cosmic rays are a heliospheric phenomenon in which interstellar neutral atoms stream into the heliosphere, are ionized by either solar radiation or the solar wind, and are subsequently accelerated to very high energies, greater than 1 GeV. Current thinking has the bulk of the acceleration to very-high energies taking place, by the mechanism of diffusive shock acceleration, at the termination shock of the solar wind. Detailed two-dimensional numerical simulations and models based on this picture show broad agreement with a number of the observed properties of anomalous cosmic rays. Recent improvements to this picture include the observation of multiply charged cosmic rays and the suggestion that some "preacceleration" of the initially ionized particles occurs in the inner heliosphere.  相似文献   

4.
Cosmic ray particles respond to the heliospheric magnetic field in the expanding solar wind and its turbulence and therefore provide a unique probe for conditions in the changing heliosphere. During the last four years, concentrated around the solar minimum period of solar cycle 22, the exploration of the solar polar regions by the joint ESA/NASA mission Ulysses revealed the three-dimensional behavior of cosmic rays in the inner and middle heliosphere. Also during the last decades, the Pioneer and Voyager missions have greatly expanded our understanding of the structure and extent of the outer heliosphere. Simultaneously, numerical models describing the propagation of galactic cosmic rays are becoming sophisticated tools for interpreting and understanding these observations. We give an introduction to the subject of the modulation of galactic cosmic rays in the heliosphere during solar minimum. The modulation effects on cosmic rays of corotating interaction regions and their successors in the outer heliosphere are discussed in more detail by Gazis, McDonald et al. (1999) and McKibben, Jokipii et al. (1999) in this volume. Cosmic-ray observations from the Ulysses spacecraft at high heliographic latitudes are also described extensively in this volume by Kunow, Lee et al. (1999). This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
6.
Our knowledge of how galactic and anomalous cosmic rays are modulated in the inner heliosphere has been dramatically enlarged as a result of measurements from several missions launched in the past ten years. Among them, Ulysses explored the polar regions of the inner heliosphere during the last solar minimum period and is now revisiting southern polar latitudes under solar maximum conditions. This gives us for the first time the possibility to compare modulation of cosmic rays at high heliographic latitudes during such different time periods. We present data from different instruments on board the Ulysses spacecraft together with 1 AU measurements in the ecliptic. In this paper we focus on measurements that have direct implications for our understanding of modulation of cosmic rays in the inner heliosphere. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
Simnett  G. M.  Kunow  H.  Flückiger  E.  Heber  B.  Horbury  T.  Kóta  J.  Lazarus  A.  Roelof  E. C.  Simpson  J. A.  Zhang  M.  Decker  R. B. 《Space Science Reviews》1998,83(1-2):215-258
The corotating particle events give us a unique opportunity to probe the three-dimensional structures of the heliosphere. This is especially true if we have observations over a period of extreme stability of the CIRs, such as existed over the recent solar minimum. We discuss how the observations fit into the context of current heliospheric magnetic field models. The energetic particle signatures of CIRs throughout the regions of the heliosphere covered by the deep-space missions are reviewed. The CIRs accelerate these particles and at the same time modulate both the high energy galactic cosmic rays and the anomalous cosmic rays.  相似文献   

8.
Webber  W.R.  Lockwood  J.A. 《Space Science Reviews》1998,83(1-2):159-167
This paper summarizes cosmic ray data on both galactic and anomalous particles in the inner and outer heliosphere near the sunspot minimum in 1995 and 1996 at the end of solar cycle 22. These data come from the IMP spacecraft in the inner heliosphere and the Voyager and Pioneer spacecraft in the outer heliosphere. In the inner heliosphere, the cosmic ray intensities at all energies in 1996 have recovered to almost the same maximum values they had at the last sunspot minimum in 1987 and the intensities are an even closer match to those observed two 11-year cycles earlier in 1976. In the outer heliosphere beyond 40 AU the intensity recovery is very slow and the intensities at all energies and for all species are almost constant in 1995-96 indicating that little further recovery can be expected in this cycle. The intensity of galactic cosmic rays in 1996 is only 0.3-0.5 of that observed at the same radius of 42 AU in 1987 and for anomalous cosmic rays this ratio is only 0.1-0.2. This suggests a dramatically different entry of particles into the heliosphere in the two cycles for both types of particles as well as significantly different particle flow characteristics in the outer heliosphere. The net result of these different characteristics is that near the Earth only a relatively small intensity difference is observed between successive 11-year solar cycles whereas in the outer heliosphere the differences between cycles become very large and may even dominate the overall modulation.  相似文献   

9.
Interplanetary coronal mass ejections (ICMEs) propagate into the outer heliosphere, where they can have a significant effect on the structure, evolution, and morphology of the solar wind, particularly during times of high solar activity. They are known to play an important role in cosmic ray modulation and the acceleration of energetic particles. ICMEs are also believed to be associated with the large global transient events that swept through the heliosphere during the declining phases of solar cycles 21 and 22. But until recently, little was known about the actual behavior of ICMEs at large heliographic latitudes and large distances from the Sun. Over the past decade, the Ulysses spacecraft has provided in situ observations of ICMEs at moderate heliographic distances over a broad range of heliographic latitudes. More recently, observations of alpha particle enhancements, proton temperature depressions, and magnetic clouds at the Voyager and Pioneer spacecraft have begun to provide comparable information regarding the behavior of ICMEs at extremely large heliocentric distances. At the same time, advances in modeling have provided new insights into the dynamics and evolution of ICMEs and their effects on cosmic rays and energetic particles.  相似文献   

10.
Modulation models based on the numerical solution of Parker's transport equation for galactic cosmic rays in the heliosphere make clear predictions about modulation in the high latitude heliosphere. However, for these predictions certain assumptions have to be made, for example, what the heliospheric magnetic field (HMF) looks like above the solar poles and what the spatial dependence of the diffusion coefficients are. For this presentation the general predictions of a standard drift model for the modulation of cosmic rays in the high latitude heliosphere, in particular predictions for the Ulysses trajectory, are discussed and critically reviewed. Preliminary results from Ulysses show a significant increase in the solar wind speed towards higher latitudes. The effects of this strong latitudinal dependence together with different modifications of the HMF at these high latitudes on the apparently too large diffusion and drifts predicted by current models are also shown.  相似文献   

11.
The Sun's interplanetary magnetic field and the solar wind modulate the distribution of galactic cosmic-ray particles in the heliosphere. The particles diffuse inward, convert outward and have drifts in the motion of their gyro-centres. Irregularities in the IMF also scatter particles from their gyro-orbits. These processes are the components of solar modulation and produce streaming (and higher-order anisotropies) of particles in the heliosphere. The anisotropies can be investigated at the Earth by examining the count rates of cosmic-ray detectors. The anisotropic streams appear as diurnal variations in solar and sidereal time in the count rates. Higher-order anisotropies produce generally much smaller semi-diurnal and higher-order variations. Theoretical models of solar modulation predict effects that depend on the polarity of the Sun's magnetic dipole. The solar diurnal and north-south anisotropies can be used to test these predictions. This paper is a short review of analyses of 60 years of cosmic-ray data collected at the Earth for the solar and sidereal diurnal variations present. Past analyses have yielded interesting and controversial results regarding the rigidity spectra and components of these anisotropies. Some of the controversy remains today. Analyses of these anisotropies have also yielded quantitative information about parameters important to solar modulation, such as latitudinal and radial density gradients. The relatively new techniques used for these determinations are explained here. Calculations of these modulation parameters from Earth-based cosmic-ray detectors are reviewed and compared to spaceprobe measurements and theoretical predictions of their values. Recently, investigations of the sidereal and solar diurnal anisotropies have been combined to calculate mean-free-paths of cosmic rays in the heliosphere. The latest conclusions from these analyses are that the parallel mean-free-paths of cosmic rays may depend on the polarity of the Sun's magnetic field. The results of these investigations are included in this paper to indicate the present state of knowledge concerning this facet of cosmic-ray research.Now at Department of Physics, Shinshu University, 3-1-1 Asahi, Matsumoto 390, Japan.  相似文献   

12.
This report is a brief introduction to some of the vital contributions that the Advanced Composition Explorer Mission will make towards our understanding of the origins of matter and acceleration of particles on a wide range of solar and astrophysical scales. Examples of these contributions are drawn from two broad areas of the space sciences. They are: (1) Dynamical phenomena at the Sun and in the inner heliosphere; and (2) The elemental and isotopic composition of matter in the solar wind, solar accelerated ejecta, galactic cosmic radiation and the anomalous nuclear component in the heliosphere. Some current problems with theories intended to account for these phenomena are discussed, including interpretations of the stable and radioactive isotopes in the galactic cosmic rays. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
Beginning in the early 1950s, data from neutron monitors placed the taxonomy of cosmic ray temporal variations on a firm footing, extended the observations of the Sun as a transient source of high energy particles and laid the foundation of our early concepts of a heliosphere. The first major impact of the arrival of the Space Age in 1957 on our understanding of cosmic rays came from spacecraft operating beyond the confines of our magnetosphere. These new observations showed that Forbush decreases were caused by interplanetary disturbances and not by changes in the geomagnetic field; the existence of both the predicted solar wind and interplanetary magnetic field was confirmed; the Sun was revealed as a frequent source of energetic ions and electrons in the 10–100 MeV range; and a number of new, low-energy particle populations was discovered. Neutron monitor data were of great value in interpreting many of these new results. With the launch of IMP 6 in 1971, followed by a number of other spacecraft, long-term monitoring of low and medium energy galactic and anomalous cosmic rays and solar and interplanetary energetic particles, and the interplanetary medium were available on a continuous basis. Many synoptic studies have been carried out using both neutron monitor and space observations. The data from the Pioneer 10/11 and Voyagers 1/2 deep space missions and the journey of Ulysses over the region of the solar poles have significantly extended our knowledge of the heliosphere and have provided enhanced understanding of many effects that were first identified in the neutron monitor data. Solar observations are a special area of space studies that has had great impact on interpreting results from neutron monitors, in particular the identification of coronal holes as the source of high-speed solar wind streams and the recognition of the importance of coronal mass ejections in producing interplanetary disturbances and accelerating solar energetic particles. In the future, with the new emphasis on carefully intercalibrated networks of neutron monitors and the improved instrumentation for space studies, these symbionic relations should prove to be even more productive in extending our understanding of the acceleration and transport of energetic particles in our heliosphere. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
The spectra of galactic cosmic rays that are observed inside the heliosphere result from the interaction of the spectra present in the local interstellar medium with the structured but turbulent magnetic field carried by the solar wind. Observational tests of solar modulation theory depend on comparisons between spectra inside and outside the heliosphere. Our knowledge of the local interstellar spectra are indirect, using extrapolations of interplanetary spectra measured at high energies where solar modulation effects are minimal and modeling of the physical processes that occur during particle acceleration and transport in the interstellar medium. The resulting estimates of the interstellar spectra can also be checked against observations of the effects that cosmic rays have on the chemistry of the interstellar medium and on the production of the diffuse galactic gamma-ray background. I review the present understanding of the local galactic cosmic-ray spectra, emphasizing the constraints set by observations and the uncertainties that remain.  相似文献   

15.
Belov  Anatoly 《Space Science Reviews》2000,93(1-2):79-105
The current knowledge and ideas, obtained from groundlevel observations and concerning the solar modulation of cosmic rays, are reviewed. The following topics are discussed: observations of the cosmic ray modulation at the Earth and main characteristics of the accumulated experimental data; manifestations of the solar magnetic cycle in cosmic rays; the effect of hysteresis and its relation to the size of the heliosphere; the rigidity spectrum of long-term cosmic ray variations; the influence of the sporadic effects on long-term modulation; long-term variations of cosmic ray anisotropy and gradients; the place of groundlevel observations in current studies of cosmic ray modulation and their future prospects. Particular consideration is given to the correlation of long-term cosmic ray variations with different solar-heliospheric parameters, and to empirical models of cosmic ray modulation. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
Since the publication of Cosmic Rays in the Heliosphere in 1998 there has been great progress in understanding how and why cosmic rays vary in space and time. This paper discusses measurements that are needed to continue advances in relating cosmic ray variations to changes in solar and interplanetary activity and variations in the local interstellar environment. Cosmic ray acceleration and transport is an important discipline in space physics and astrophysics, but it also plays a critical role in defining the radiation environment for humans and hardware in space, and is critical to efforts to unravel the history of solar activity. Cosmic rays are measured directly by balloon-borne and space instruments, and indirectly by ground-based neutron, muon and neutrino detectors, and by measurements of cosmogenic isotopes in ice cores, tree-rings, sediments, and meteorites. The topics covered here include: what we can learn from the deep 2008–2009 solar minimum, when cosmic rays reached the highest intensities of the space era; the implications of 10Be and 14C isotope archives for past and future solar activity; the effects of variations in the size of the heliosphere; opportunities provided by the Voyagers for discovering the origin of anomalous cosmic rays and measuring cosmic-ray spectra in interstellar space; and future space missions that can continue the exciting exploration of the heliosphere that has occurred over the past 50 years.  相似文献   

17.
The solar wind termination shock is described as a multi-fluid phenomenon taking into account the magnetohydrodynamic self-interaction of a multispecies plasma consisting of solar wind ions, pick-up ions and shock-generated anomalous cosmic ray particles. The spatial diffusion of these high energy particles relative to the resulting, pressure-modified solar wind flow structure is described by a coupled system of differential equations describing mass-, momentum-, and energy-flow continuities for all plasma components. The energy loss due to escape of energetic particles (MeV) from the precursor into the inner heliosphere is taken into account. We determine the integrated properties of the anomalous cosmic ray gas and the low-energy solar wind. Also the variation of the compression ratio of the shock structure is quantitatively determined and is related to the pick-up ion energization efficiency and to the mean energy of the downstream anomalous cosmic ray particles. The variation of the resulting shock structure and of the solar wind sheath plasma extent beyond the shock is discussed with respect to its consequences for the LISM neutral gas filtration and the threedimensional shape of the heliosphere.  相似文献   

18.
We discuss the solar wind parameters measured in the distant heliosphere from the Voyager 2 spacecraft. Periodic variations in the speed of the wind observed at roughly the solar rotation period may correspond to interaction regions between slower and faster streams of wind. Since the interplanetary magnetic field is enhanced in such regions, they are important for the study of modulation of cosmic rays. Unfortunately, direct observation of the enhanced magnetic field from Voyager 2 has been made difficult by spacecraft-associated noise since 1989.  相似文献   

19.
Almost all theoretical and numerical models for the modulation of cosmic ray in the heliosphere are based on Parker's transport equation which contains all the important basic physical processes. The relative importance of the various mechanisms is however not established and may vary significantly over 22 years. The simultaneous measurements of solar wind parameters, heliospheric magnetic field properties and cosmic rays over a wide range of energies and positions in the heliosphere have brought the realization that modulation is much more complicated than what the original drift models predicted. In the process the sophistication of models based on solving Parker's equation has increased by orders of magnitude. A short review of the global modulation of cosmic rays is given from a theoretical and modelling point of view.  相似文献   

20.
The fluxes of O and Fe ions at high heliolatitudes measured by the HiScale instrument on Ulysses reflect the dynamical processes that affect the charged particle populations in the heliosphere. Both the O and Fe ions show more latitude dependence in the first (solar minimum) orbit to high southern heliolatitudes than during the second (solar maximum) orbit. The ion fluxes are larger during the solar minimum orbit; the flux levels are influenced by the occurrence of corotating interaction regions. The Fe/O abundance ratios are found to be similar at 1 AU and at high heliolatitudes. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号