首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
中国空气动力研究与发展中心自行设计的2m×2m超声速风洞于2010年底建成,它是一座直流、暂冲式风洞,采用了全挠性壁喷管技术.喷管总长18m,具有马赫数1.5~4.0的十多个型面,每个型面通过24对撑杆的伸缩实施成型.该喷管的气动设计采用了具有连续曲率的Sivells设计方法,并用Maxwell方法对其进行了边界层修正.该喷管采用实验影响法进行了喷管型面的动态调试,个别型面还采用了二次修正.调试结果显示,在各设计马赫数下,试验段模型区流场指标均优于GJB先进指标,表明该喷管的气动设计是成功的.  相似文献   

2.
半柔壁喷管是跨超声速风洞柔壁喷管的一种类型,由喉道块、可变型面的柔板及出口端板等部分构成。半柔壁喷管具有长度短、支撑机构数量少、建设成本低、系统可靠性高、运行维护成本低等优点。鉴于半柔壁喷管的各项优点,航空工业气动院的0.6 m连续式跨声速风洞和2.4 m连续式跨声速风洞均采用半柔壁喷管。本文以0.6 m风洞的半柔壁喷管为例,详细介绍航空工业气动院的半柔壁喷管型面设计方法,主要内容包括曲率连续的喷管无黏型面设计方法、曲率连续的附面层位移厚度计算方法、喷管型面的迭代设计方法、半柔壁喷管设计方法和喉道块上游型线设计方法。本文提出了一种根据计算流体动力学(Computational fluid dynamics, CFD)和流场校测结果调节附面层位移厚度的喷管型面校准方法,有效地提高了喷管型面出口马赫数的精准度。半柔壁喷管流场校测结果表明,半柔壁喷管菱形区的马赫数偏差小,流场均匀性良好,达到国军标先进水平。  相似文献   

3.
半柔壁喷管初步实验研究   总被引:4,自引:0,他引:4       下载免费PDF全文
为了验证跨超声速风洞半柔壁喷管的气动设计结果,在试验平台上经过对喷管的动调,完成了半柔壁喷管的性能测试研究.得到如下初步结论:所使用的半柔壁喷管气动设计方法有效可行,马赫数调节范围及喷管流场均匀性指标达到设计要求;通过对喷管的动调,喷管第一菱形区的马赫数均方根偏差可降低30%~40%;在风洞吹风过程中,可实现喷管马赫数的连续变化功能,在喷管型面调节速度适当时,试验段流场均匀性指标与喷管固定型面时相当.  相似文献   

4.
针对高超声速风洞轴对称喷管设计问题,开展了喷管扩张段无粘型面设计研究。介绍了基于预设轴线马赫数分布的直接设计方法,改进了基于面积比的轴线马赫数分布预设方法,提出了一种方便多点控制的轴线特征点分布方法。对设计喷管流场进行特征线网三角化,与数值模拟结果进行比较,并分析了影响喷管无粘型面的设计因素。表明:改进的面积比方法可以保证轴线马赫数分布预设的合理性;轴线马赫数分布、轴线上特征点分布和边界特征点数明显影响喷管无粘型面。  相似文献   

5.
2m×2m超声速风洞是一座大型引射下吹式风洞,总压控制具有菲线性、时变、大滞后特性,引射器和主调压阀同时运行时存在一定的耦合特性.为了满足风洞试验对总压控制精度和收敛速度的要求,对不同马赫数试验条件下,风洞流场启动和串级智能稳定控制策略进行了深入研究,并在调试过程中对控制方法进行了验证,控制结果达到风洞指标要求.  相似文献   

6.
为实现全电机直接驱动方式对某跨超声速风洞全挠性壁喷管型面的控制,针对其执行机构分布跨度大、运动控制电机多、同步精度要求高且弯折应力控制严等特点,采用西门子SIMOTION D+S120运动控制平台,提出一种基于虚拟轴+电子齿轮的同步控制策略,解决了全挠性喷管执行机构精确定位与多轴比例同步的难题,同时设计多重安全联锁控制,避免了挠性板过载和损坏的问题。通过调试试验测试,各电动缸可根据比例同步要求在0~1mm/s速度范围内匀速运行,跟踪误差≤±0.01mm/s,比例同步误差≤±0.02mm/s,喷管喉道前型面误差≤±0.2mm,喉道后误差≤±0.06mm。结果表明:该系统功能完备,同步控制精度及重复性精度均满足工程应用要求,取得了实际应用成果。  相似文献   

7.
中国空气动力研究与发展中心(China Aerodynamics Research and Development Center,CARDC)0.6 m连续式跨声速风洞是一座采用干燥空气作为试验介质的变密度回流式风洞。本文在前期风洞总体性能调试的基础上,通过风洞试验段不同壁板(槽壁/孔壁)型式及设计参数优化、压缩机尾罩和拐角段等洞体回路部段降噪、壁板扩开角和主流引射缝等机构调节、半柔壁喷管和二喉道以及驻室抽气系统控制等措施,对风洞流场品质进行改进,取得了突出进步。主要研究成果包括:总压控制精度优于0.1%;试验段马赫数控制精度优于0.001;跨超声速试验段气流压力脉动系数ΔC_p≤0.8%;平均气流偏角优于0.1°;稳定段出口气流湍流度ε≤1.5%;试验马赫数分布均匀性和标模试验数据精度等指标均达到国际先进水平。该流场品质调试研究充分验证了连续式跨声速风洞实现更高流场品质的可行性,为中国大型连续式跨声速风洞方案设计及国际先进流场品质保证提供了参考。  相似文献   

8.
半柔壁喷管机构动力学仿真技术研究   总被引:2,自引:0,他引:2       下载免费PDF全文
基于刚柔耦合动力学仿真软件ADAMS,设计了半柔壁喷管的机构动力学仿真流程.在此基础上,针对柔性壁板的大挠度变形以及螺钉联接接触等非线性问题,综合分段线性化、等效刚度等处理方法,建立了半柔壁喷管机构动力学仿真模型.经与NASTRAN软件非线性有限元计算以及柔壁力学试验等结果比较,表明该半柔壁喷管机构动力学仿真模型具有较高的合理性和正确性.最后,检查了柔壁型面与气动型面之间的吻合度,并且分析了推杆驱动位移对试验段静压的影响关系.  相似文献   

9.
利用M1.4喷管和开孔壁试验段实现低超声速流场实验研究   总被引:2,自引:1,他引:1  
在FL-26y风洞中利用M1.4喷管和开孔壁试验段进行了实现低超声速流场的实验研究工作.通过实验研究验证了利用M1.4喷管在开孔壁试验段上建立起的低超声速流场的流场品质能够满足国军标合格指标的要求.实验还考察了不同稳定段总压、驻室抽气量等开车参数以及不同试验段扩开角、主流引射缝开度和开孔壁开孔率等洞体条件对流场的影响,为2.4m×2.4m跨声速风洞增设M1.4喷管,拓展该风洞试验马赫数的范围,使其具备M1.4的低超声速试验能力提供了技术支持,同时也为该风洞在下一阶段正式开展M1.4流场调试提供了可供参考的调试参数.  相似文献   

10.
南航NHW Φ0.5m高超声速风洞试验马赫数为5、6、7和8,建成后对风洞流场进行了速度场校测和AGARD-HB-2标模测力试验.介绍了M5和M8喷管速度场校测和标模试验.结果表明:风洞均匀区范围可达336mm;截面内最大马赫数偏差,M5喷管流场|ΔMa_j|_(max)/aj=0.006,M8喷管流场|ΔMa_j|_(max)/a_j=0.007;截面标准差,M5喷管流场σMa_j/|ΔMa_j|_(max)=0.378,M8喷管流场σMa_j/|ΔMa_j|_(max)=0.484.上述各项条件均满足GJB4399-2002对风洞速度场的要求.经过对比,NHW风洞的标模测力结果与国内风洞试验数据吻合较好且全部在AGARD-HB-2数据带内,这证明了该风洞试验数据的准确性.流场校测和标模试验的结果证明了该风洞满足设计指标.  相似文献   

11.
高超声速风洞气动布局设计   总被引:4,自引:0,他引:4  
在分析国内外高超声速风洞发展现状的基础上,根据南京航空航天大学高超声速风洞(Nanjing Universityof Aeronautics & Astronautics Hypersonic Wind Tunnel,NHW)总体技术指标和要求,对该风洞气动布局设计方案和备部件的气动设计进行了研究.风洞气动布局设计点为马赫数5和8、设计总压为1 Mpa、总温685 K;风洞驱动方式采用高压下吹-真空吸气式方案,运行时间大于10 s、高压气源容积为32 m3、真空容积为650 m3;风洞加热方式采用金属板蓄热式加热器方案;风洞试验马赫数获取方式采用φ0.5 m口径的马赫数5,6,7和8的型面喷管方案.  相似文献   

12.
0.6m连续式跨声速风洞总体性能   总被引:1,自引:2,他引:1       下载免费PDF全文
中国空气动力研究与发展中心(CARDC)0.6m连续式跨声速风洞是一座采用干燥空气作为试验介质的变密度回流式风洞,设计方案采用了宽工况压缩机及其与风洞一体化设计、半柔壁喷管、低噪声跨声速试验段、指片再入调节片式主流引射缝、高性能换热器和三段调节片加可调中心体式二喉道等新型技术。通过风洞总体性能调试,获取了风洞安全运行边界及总体性能,得到了风洞各关键部段性能参数。调试结果表明,风洞总体和各部段性能均达到预期设计技术要求;压缩机、换热器和各辅助系统设备运行性能良好;实现稳定段总压运行范围15~250kPa,总压控制精度优于0.2%;实现试验段Ma运行范围为0.144~1.640,马赫数控制精度优于0.002;轴向马赫数分布均方根偏差优于设计指标(Ma ≤ 1.0时,σMa < 0.002,1.0 < Ma ≤ 1.6时,σMa < 0.008)的要求;当试验Ma ≥ 0.5时,试验段核心气流脉动压力系数ΔCp < 0.8%。调试结果验证了0.6m连续式跨声速风洞设计方案的可行性,为我国大型连续式跨声速风洞研制提供参考。  相似文献   

13.
在强几何约束条件下,对一种Ma=0~6.0的小长高比组合发动机喷管气动设计开展了初步研究。采用特征线法设计程序开展了喷管型线设计,并对设计点马赫数选取、三维侧向膨胀角、喷管双通道相对位置对喷管气动性能的影响开展了研究,给出了兼顾空间有效利用与喷管气动性能的喷管气动设计方案。数值模拟结果显示:降低设计点马赫数可以改善组合发动机喷管在低马赫数飞行时的性能,避免喷管出现严重过膨胀;喷管保持出口高度不变时,随着侧向膨胀角的増大,其高马赫数气动性能较优,而低马赫数气动性能下降严重。涡轮/冲压发动机喷管出口相对位置对并联布局组合发动机喷管转级点气动性能影响较大,且存在一个最佳位置布局,使得转级点达到最优的推力性能。获得的组合发动机喷管在设计马赫数下的推力系数约为0.920,模态转换过程流场平稳过渡,推力系数不低于0.918。  相似文献   

14.
用于跨声速气动测量的探针须从亚声速到超声速范围进行标定。变质量槽式喷管通过扩张段壁面上槽缝流出部分气流的自适应特性可在不同背压下得到不同出口马赫数,从而使标定气动探针的风洞实现马赫数从0到超声速的连续变化。为了研究采用湿蒸汽为工质的变质量槽式喷管的性能及优化其结构,采用三维犖-犛方程以及可实现犽-ε湍流模型对其进行了详细的数值仿真。结果表明收缩段型线、扩张段长度及壁槽尺寸等对喷管流场特性有重要影响,喷管进出口压比在一定范围内,槽式喷管有最优的收缩段型线、扩张段长度和开槽尺寸。根据数值仿真结果研制了马赫数从0到1.6连续可变的跨声速湿蒸汽风洞,对此风洞性能进行验证,表明该风洞在马赫数从零到超声速范围内可获得均匀、稳定的出口气流,满足跨声速湿蒸汽气动探针的标定要求。  相似文献   

15.
对最短长度喷管(MLN)设计方法进行了改进和优化,在喷管喉部扩张段实现了光滑过渡,采用特征线方法设计轴对称短化喷管型面。采用高阶、高分辨率WENO格式对设计的喷管进行流场数值模拟,结果表明:短长度喷管和喉部加圆弧过渡的短化喷管出口流场均匀,能够达到设计要求,经过圆弧过渡的喷管型面出口流场品质更好。  相似文献   

16.
2.4m跨声速风洞槽壁试验段调试及流场校测   总被引:2,自引:0,他引:2       下载免费PDF全文
介绍了新研制的2.4m跨声速风洞槽壁试验段调试情况及流场校测结果.结果表明:该试验段边界层厚度、消波特性等满足使用需求,具有较大的流场均匀区,在M数为0.30~1.00范围内的核心流场M数分布均方根偏差满足GJB1179-91高速风洞与低速风洞流场品质规范合格指标要求,部分马赫数的均方根偏差达到或接近先进指标要求,可投入型号试验.槽壁试验段的成功研制提高了2.4m跨声速风洞承担大型飞机试验任务的能力,在中国大型飞机工程气动设计中将发挥重要的平台作用.  相似文献   

17.
推力特性是发动机的重要特性,也是评价发动机喷管性能优劣的重要指标.而发动机的推力特性会随高度的变化而产生一定的变化,同时,喷管型面和结构形式,也是影响其推力特性的重要因素.目前,国内外都在研究和优化发动机喷管的结构形式和型面,改善和提高喷管的性能.为了研究分析双钟形喷管和塞式喷管的高度补偿特性,需要进行地面模拟试验.为满足在FD-20A风洞中进行高度补偿喷管试验的需要,开展了高度补偿冷态模拟试验技术研究,对在冷态模拟条件下的喷流模拟技术、喷管推力测量试验技术和流动显示技术等进行了研究,满足了试验的需求.  相似文献   

18.
2.4m跨声速风洞试验质量影响因素分析及改进措施研究   总被引:1,自引:0,他引:1  
影响风洞试验质量的因素很多,如流场品质、测量系统误差、支撑干扰以及洞壁干扰等.主要对模型姿态角、马赫数、模型支撑系统等影响因素进行了改进研究.通过改进使模型迎角测量精度达到0.03°、Ma数控制精度达到0.003,并有效降低了支撑干扰影响,提高了2.4m跨声速风洞的试验质量.  相似文献   

19.
在研究型面设计马赫数Mai对马赫数分布可控基准流场在Ma∞=4.0~7.0的性能影响中发现,降低型面设计马赫数可获得更高的流量系数、高马赫数时的增压比以及更短的长度。基于型面设计马赫数Mai=5.5,6.0和6.5的基准流场分别设计了圆形进口的内收缩进气道,并在Ma∞=4.5~7.0时进行数值模拟。结果表明:基于低型面设计马赫数基准流场设计的进气道具有更好的流量捕获特性和较高的增压比,这与基准流场变化规律基本一致。型面设计马赫数对出口总压恢复系数影响较小。  相似文献   

20.
电弧湍流平板烧蚀矩形喷管研制及应用   总被引:1,自引:1,他引:0  
为发展电弧加热器超声速湍流平板烧蚀试验技术,需研制新的矩形型面喷管.选取型面和锥面两种方案,通过数值模拟分析,最终采用了型面喷管方案.通过改进喷管结构,采用整体结构设计、加工的方法,研制的喷管使用良好,能够达到试验要求.并成功应用于材料匹配试验和边界层内的凸起物形貌烧蚀试验.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号