首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 31 毫秒
1.
航天动力发展的生力军——液氧甲烷火箭发动机   总被引:2,自引:0,他引:2  
液氧甲烷火箭发动机具有成本低、性能好、重复使用、维护方便等优点,是极具发展潜力的未来航天动力。北京航天动力研究所在十一五期间开展了60t级液氧甲烷火箭发动机原型样机研究。进行了甲烷液氧气液缩尺喷注器燃烧试验和甲烷液氧液液喷注器低混合比燃烧试验,了解了甲烷液氧的燃烧特性、点火特性等。开展了涡轮泵和阀门等组件适应性研究。研究表明,液氧甲烷发动机燃烧稳定性好,易于维护,是未来航天的理想动力选择之一。  相似文献   

2.
液氧/甲烷液体火箭发动机燃烧研究最新进展   总被引:1,自引:0,他引:1  
仲伟聪 《火箭推进》2004,30(1):52-57
近来,俄罗斯和欧洲正在联合进行一个名为“VOLGA“的研究计划.其主要目标是用于可重复使用运载火箭或大型助推器的液氧/甲烷发动机的概念研究.SNECMA的主要工作是研究预燃室/燃气发生器的可重复使用技术,在液氧/液氢“火神“燃气发生器研制过程中,获得了很多低温推进剂的燃烧经验,但液氧/甲烷富燃燃烧带来了许多新的问题:如喷注性能、燃烧效率、稳定性、积碳形成等.为了解决上述问题,目前正在进行实验和理论两方面的研究.ONERA的马斯喀特(Ma scotte)试验装置就被改造用于研究甲烷的燃烧.最初的研究完成了对低混合比和压力范围在0.1MPa到6.0MPa下的液甲烷和气甲烷同轴喷注技术的评估.各项研究在继续进行,以求对液氧/甲烷低温燃烧问题进行完整的描述和理解.除了上述研究外,还在进行计算流体力学数值模拟工具的更新工作,但是只有一些非常特殊的工况点才需要进行修改工作,这是因为过去的火箭发动机燃烧研究工作已经对液氧/液氢低温燃烧特性有了深入的理解,有很多研究成果可用于液氧/甲烷燃烧研究.目前的主要问题集中在甲烷的高频燃烧稳定性和燃烧化学效应方面.在一个称为INCA的新的燃烧研究计划框架内将对这些问题进行研究.  相似文献   

3.
高翔宇  孙纪国  田原 《火箭推进》2013,39(4):19-23,51
为了研究火箭发动机推力室冷却通道内的甲烷传热和流阻特性,研制了缩比推力室甲烷传热试验系统,并以推力室挤压热试验的形式进行了5次超临界甲烷传热试验和2次亚临界甲烷传热试验研究.超临界甲烷传热试验燃烧室压力为5.5~7.5 MPa,燃烧室氢氧混合比约为6.8,甲烷温度为128~230 K,甲烷冷却剂流量为5~7 kg/s,甲烷冷却剂入口压力为8.3~11.7 MPa.亚临界甲烷传热试验的室压约为4 MPa,氢氧混合比2.8,甲烷温度为:128~189 K,甲烷冷却剂流量约为2.9 kg/s,甲烷入口压力为3~3.5 MPa.通过试验研究获得了液态甲烷在推力室冷却通道内超临界压力状态和亚临界压力状态下的传热和流阻特性.  相似文献   

4.
液氧/甲烷发动机的应用前景   总被引:5,自引:0,他引:5  
通过对甲烷与煤油以及液氧/煤油发动机与液氧/甲烷发动机性能的对比,分析了甲烷的优点。重点介绍了美国、俄罗斯、欧洲、日本、韩国等国家液氧/甲烷发动机研究的现状。综合考虑各种因素,液氧/甲烷发动机是一种具有广泛应用前景的新型发动机,可用于载人亚轨道飞行、高性能飞机、探空火箭、运载火箭上面级、纳米卫星运载火箭第一级。  相似文献   

5.
液氧/甲烷发动机评述   总被引:3,自引:0,他引:3  
孙宏明 《火箭推进》2006,32(2):23-31
简要介绍了国外液氧/甲烷发动机的研究情况。重点论述了甲烷的特点及它用作液体燃料的优缺点。液氧/甲烷发动机具有较高的性能,甲烷有好的再生冷却性能,是一个可供选择的推进剂组合。但由于其密度比冲比液氧/煤油发动机低,使用安全性也不如煤油;性能又比液氧/液氢发动机低,这些都限制了液氧/甲烷发动机的发展和应用。迄今为止,还没有一个液氧/甲烷发动机型号开展研制工作,因而也就不可能有其使用的历史。  相似文献   

6.
提出液氧/甲烷的膨胀循环发动机的概念.介绍利用甲烷的焓-熵图进行涡轮泵功率平衡和涡轮工质循环的计算.研究该种发动机的参数范围.讨论该发动机的实现的可行性.  相似文献   

7.
火炬式电点火是可重复使用液氧甲烷发动机较为可行的点火方式之一。针对气氧/气甲烷火炬式电点火器开展了燃烧流场仿真和点火试验研究。燃烧仿真结果表明,在混合比接近当量混合比时,仿真结果与理论计算结果吻合较好,混合比富燃程度较高时,两者的偏差显著增大。另外,随着混合比的增大,火花塞所处的热环境逐渐恶化,加大了火花塞被烧蚀的风险...  相似文献   

8.
液氧/液甲烷以其高性能、无毒、易于轨姿控一体化、行星表面资源原位利用等优势已成为国际化学空间推进的主流发展方向之一,对国内外低温液氧甲烷化学空间推进发展和3 000 N液氧甲烷发动机的方案设计和试验研究进行了介绍。方案主要包括总体结构方案,喷注方案、冷却方案、点火方案和燃烧稳定性分析。3 000 N发动机于2017年3月进行了点火热试车,发动机点火全部取得成功,并进行了5 s和10 s稳态试验。燃烧效率约0. 95,推算推力大于2 860 N,地面比冲大于242 s,与设计指标基本相当。  相似文献   

9.
60t级液氧/甲烷发动机起动过程建模与仿真   总被引:2,自引:0,他引:2  
为制定可靠的发动机起动程序,围绕60 t级液氧/甲烷发动机起动瞬态特性开展了一系列建模和仿真研究.介绍了60 t级液氧/甲烷发动机系统方案,列举了发动机系统仿真模型,搭建了全系统瞬态特性仿真平台.根据仿真结果选取了箱压下点火起动方案,提出了设置甲烷涡轮燃气旁通以降低亚临界两相气阻风险的解决方案.试验结果表明,发动机主要性能参数的计算结果与试验数据一致性较好.  相似文献   

10.
讨论了液氧/烃三组元推进剂助推发动机的设计思想,这种液氧/甲烷助推发动机的初步设计还使用了液氢.试验表明,液氧/甲烷/液氢三组元推进剂发动机具有燃烧稳定、燃烧效率高、冷却性能好、能与铜合金燃烧室壁很好兼容等优点,因而可消除或大大减少设计可重复使用的高压烃类助推发动机时可能出现的风险.  相似文献   

11.
液氧/甲烷燃气发生器试验研究   总被引:2,自引:0,他引:2  
为了研究液氧/甲烷的点火和燃烧特性,进行了液氧/甲烷燃气发生器热试验研究。介绍了液氧/甲烷燃气发生器热试验的试验装置、试验方案和试验情况,分析了试验结果。试验结果表明燃气发生器设计方案和点火方案可行,点火品质较好,能够在较宽的工作条件下稳定工作,燃烧组织合理,燃烧品质良好,温度均匀性较好,积碳轻微。  相似文献   

12.
液氧/甲烷发动机动力循环方式研究   总被引:3,自引:1,他引:2  
张小平  李春红  马冬英 《火箭推进》2009,35(4):14-20,43
综述了液氧/甲烷发动机的研究进展,分析了液氧/甲烷发动机的特性和应用前景,对比了大推力液氧/甲烷发动机的动力循环方式,提出发动机动力循环方式选择应综合用途、性能、研制难度及使用成本等多方面因素,一次性使用的发动机应采用高性能的高压补燃循环,其中部分甲烷冷却推力室的富燃补燃循环较佳;重复使用的发动机应根据工作次数和工作寿命,重点考虑系统压力低的燃气发生器循环和低压的补燃循环.  相似文献   

13.
液氧甲烷单喷嘴燃烧性能数值仿真研究   总被引:1,自引:0,他引:1  
刘红珍  田原  孙纪国 《火箭推进》2014,(1):56-59,91
为了研究液氧甲烷同轴剪切式喷注器结构参数变化对燃烧性能的影响,以单喷嘴为物理模型进行了燃烧数值仿真.研究表明:适当增加氧喷嘴出口壁厚和增加喷嘴个数均能提高喷注器燃烧效率,其中增加喷嘴个数对燃烧效率的影响更为显著.  相似文献   

14.
王磊  上官石  刘柏文  雷刚  陈强  厉彦忠 《宇航学报》2022,43(11):1566-1574
针对甲烷采用液氮过冷可能发生甲烷冰堵风险,提出了在甲烷中添加乙烷,制备凝固温度更低的甲烷-乙烷混合推进剂的新方案,搭建实验系统测试了甲烷-乙烷凝固温度变化规律。研究发现,随着甲烷含量提高,混合推进剂凝固温度先降低后升高。当甲烷、乙烷比例为0.71∶0.29时,混合推进剂达到最低凝固温度,约73.0 K。当采用常压饱和液氮对混合推进剂过冷时,控制甲烷含量在0.52~0.81间可避免推进剂冻结。相较于常压饱和甲烷,防冻结区的混合推进剂密度提高了24.0%~38.4%,液相存在温区增大至35.7 K~40.5 K。此外,甲烷-乙烷混合推进剂具有理论比冲高、再生冷却性能佳、结焦与积碳小等优势。所提出的甲烷-乙烷混合推进剂在火星探测等任务中具有可观的应用前景。  相似文献   

15.
无毒、无污染的大推力可重复使用液氧甲烷发动机成为研究热潮,以200 t级全流量补燃循环液氧甲烷发动机为研究对象,结合真实气体效应下涡轮绝热功模型和低温冷却套模型,对比分析了发动机多种调节元件设置方案,结果表明富氧发生器、富燃发生器副路调节元件分别设置为调节器和节流阀时,发动机推力和混合比耦合程度相对较低,利于单一工况参数的调节。在此系统方案基础上,通过仿真对比分析,选择出了最佳推力调节方案。  相似文献   

16.
为研究微小推力室的工作特点,建立了双组元微小推力室的地面实验装置和数据采集系统。在内径为4mm,喉部直径为0.4mm的微小推力室内,采用氧气和甲烷气体作为推进剂进行了点火热试车,实时测量燃烧室压力和壁面的温度分布。实验结果表明,在富燃工况下,随着混合比的升高,燃烧温度和燃烧室压力逐渐升高;当混合比一定时,随着总流量的增加,燃烧室压力增加,微小推力室的推力和比冲也在升高。微小推力室的真空推力达到120mN,真空比冲达到了240s。  相似文献   

17.
30kN上面级液氧甲烷发动机方案   总被引:1,自引:0,他引:1  
上面级是介于运载火箭与航天器之间的相对独立的一级,具备轨道转移能力,可将有效载荷精确送入预定轨道。上面级是提高火箭运载能力和提升任务适应性的有效途径,上面级发动机是实现该目标的关键。长期在轨的高性能上面级,要求主动力具备比冲高、空间可长期贮存和高可靠性等能力。针对此技术需求,对比分析了上面级发动机的系统方案;设计了采用泵压膨胀循环、双涡轮泵串联的30 kN上面级发动机系统方案;重点介绍了推力室、涡轮泵和发动机总装集成等关键组件的研究进展。研究表明:液氧甲烷推进剂非常适用于长期在轨上面级发动机;闭式膨胀循环发动机系统是长期在轨上面级动力系统方案的首选;推力室和涡轮泵等组件的研制结果,初步证明了发动机系统及组件方案的可行性;发动机总装和演示试验方案设计工作,为深入开展发动机系统技术研究打下了良好基础。  相似文献   

18.
液氧/甲烷燃气发生器点火方案研究   总被引:1,自引:0,他引:1  
在对比化学点火、火药点火及电火花点火优缺点的基础上,选取了技术成熟、点火可靠的火药点火用于液氧/甲烷燃气发生器热试。用黑火药点燃固体推进剂的点火药量计算公式估算了火药点火药量,给出了液氧/甲烷燃气发生器火药点火器的其它参数。根据液氧/甲烷推进剂特点,确定了火药燃气-液氧-甲烷依次进入燃气发生器的点火时序。成功进行了4次液氧/甲烷燃气发生器热试,结果表明:液氧/甲烷燃气发生器点火起动过程平稳,点火品质较好,点火方案合理,适于较宽工作条件下的液氧/甲烷点火。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号