首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
在密近双星系统Her X-1/HZ Her中,Her X-1被HZ Her掩食时的X射线光度变化,为研究HZ Her的大气结构,提供了一个直接的观测证据。本文对这个系统的二次食变过程资料进行了拟合分析,推断了HZ Her的低层大气结构,面对X射线源一面的大气,由于X射线的加热作用,其低部存在着一层温度约为8×104K的色球层。与已有的HZ Her大气结构理论相比较,大致符合,但有一定差异。本文简单讨论了这种差异。   相似文献   

2.
强磁暴期间TIEGCM模式与CHAMP卫星热层大气密度的比较分析   总被引:2,自引:2,他引:0  
利用NCAR-TIEGCM模式计算了2003年11月20—21日强磁暴期间410km高度上的大气密度,并与CHAMP/STAR加速度计反演数据进行对比和分析. 结果表明,模式结果能够准确反映磁暴期间大气密度的分布和变化情况,与实测结果在变化趋势和量级上具有较好的一致性,但在精细结构和数值大小上仍存在一定差异. 模式低估了磁暴期间大气密度的增幅,实测大气密度增幅高达250%~400%,而模式结果为100%~125%. 模式结果与实测数据的偏差在高纬地区高于低纬地区,日侧高于夜侧. 通过模式和实测数据的分析发现,磁暴期间大气密度扰动具有日夜侧和南北半球不对称性. 此外,模式能够准确反映磁暴期间大气密度扰动从高纬向低纬的传播以及大气密度对SYM-H指数响应的延迟特性.   相似文献   

3.
利用CHAMP卫星数据,对2002-2008年12个不同强度磁暴事件期间的热层大气密度变化特征进行分析,并研究对应磁暴期间大气模式NRLMSISE-00分布特征.结果表明,大磁暴期间日侧大气密度峰值从高纬到低纬的时间延迟为2h,中小磁暴期间的延迟时间为3~4h;春秋季暴时大气密度分布基本呈南北对称分布,而夏冬季大气密度的分布是夏半球大于冬半球,春秋季暴时大气密度大于夏冬季;NRLMSISE-00大气模式得到的热层大气密度很好的体现了半球分布以及季节分布的特征,但模式模拟结果偏小;Dst指数峰值比ap指数峰值更能反应大气密度的变化情况.   相似文献   

4.
利用GRACE(Gravity Recovery And Climate Experiment)和CHAMP(Challenging Mini-Satellite Payload)卫星2002-2008年的大气密度数据与NRLMSISE-00大气模型密度结果进行比较,分析了模型密度误差及其特点.结果显示,NRLMSISE-00大气模型计算的密度值普遍偏大,其相对误差随经纬度变化,在高纬度相对较小;相对误差随地方时变化,在02:00LT和15:00LT左右较大,10:00LT和20:00LT左右较小.通过模型密度相对误差与太阳F10.7指数的对比分析发现,在太阳活动低年模型相对误差最大,而在太阳活动高年相对误差较小;将模型结果分别与GRACEA/B双星和CHAMP卫星的密度数据进行比较,发现对于轨道高度更高的GRACE卫星轨道,模型相对误差更大;在地磁平静期,相对误差与地磁ap指数(当前3h)相关性不强,但是在大磁暴发生时,误差急剧增大.   相似文献   

5.
青岛上空中层大气密度和温度的激光雷达探测   总被引:2,自引:2,他引:0  
介绍了中国电波传播研究所瑞利散射激光雷达系统的结构和性能, 阐述了激光雷达探测中层大气密度和温度的工作原理, 给出了青岛地区中层大气密度和温度的初步探测结果. 通过与卫星、探空气球和大气模式数据的结果对比, 验证了激光雷达探测大气温度的可靠性. 基于2008-2009两年的观测, 获得了青岛地区上空中层大气温度的季节变化和平均分布. 激光雷达观测结果表明, 青岛地区平流层温度比CIRA86模式结果高, 且二者偏差呈夏秋季小、冬春季大的特点, 中间层温度则正好相反.   相似文献   

6.
通过对类X-20高超声速飞行器的气动系数与高度、马赫数、攻角、侧滑角和舵偏角的关系进行分析,对各项气动系数进行了简化和拟合,并将舵偏增量视作控制输入,在此基础上建立了类X-20飞行器仿射非线性形式的控制模型,证明了它是可以输入输出精确线性化的,从而可以设计反馈线性化控制器.最后在存在大气密度、气动力矩系数和转动惯量不确定性情形下,针对原动力学模型进行闭环仿真研究,原动力学模型考虑地球旋转,气动数据直接从类X-20飞行器的气动数据表插值得到.仿真结果表明,所设计的控制律可以实现控制目标,具有较强鲁棒性.  相似文献   

7.
利用NCAR-TIEGCM计算了第23太阳活动周期间(1996—2008年)400km高度上的大气密度,并统计分析大气密度对太阳辐射指数FF10.7的响应.结果表明,在第23太阳活动周内,大气密度的变化趋势与太阳辐射指数FF10.7的变化趋势基本一致,但是大气密度在不同年份、不同月份对太阳辐射指数FF10.7的响应存在差异.第23太阳活动周内太阳辐射极大值和极小值之比大于4,而大气密度的极大值与极小值之比则大于10.太阳辐射低年的年内大气密度变化不到2倍,而太阳辐射高年的年内大气密度变化可达2倍甚至3倍.大气密度与FF10.7指数在北半球高纬的相关系数比南半球高纬的相关系数大.在低纬地区,太阳辐射高年大气密度与FF10.7指数的相关系数比低年的大.不同纬度上,大气密度与太阳辐射指数FF10.7的27天变化值之间的相关系数都大于其与81天变化值之间的相关系数.   相似文献   

8.
建立了双星定位和双星/GIS组合定位的计算模型.在此基础上研究了星历误差对双星定位结果的 影响,卫星位置偏差对组合定位结果的影响,在组合定位中,在经、纬度方向上,分别给卫星位置加入均方差 为1°的位置偏差.结果表明,给卫星位置加入均方差为1°的经、纬度方向位置偏差,并不会降低组合定位的 精度.对这一重要结论,从几何上给出了解释.最后进行了双星/GIS组合定位的物理试验.试验结果表明, 双星/GIS组合定位确实可以大大提高双星定位的精度.  相似文献   

9.
传统经验大气密度模式预测大气密度存在的较大误差会引起低轨卫星轨道预报误差,对卫星的再入轨、控制计划、碰撞规避及精密定轨造成不利影响.利用天宫一号卫星探测数据,针对大气NRLMSISE-00模式计算的误差特点,在地磁相对平静(Ap ≤ 30)的时间段内,对相近地方时和纬度的模式误差分布进行分析发现,相近地方时和纬度的模式误差分布基本相同.利用二维核回归估计方法,对与预测点相近地方时和纬度的样本误差进行加权,估计预测点处的模式误差,进而按距离预测日期天数的长短,采用加权修正法对模式预测结果进行修正,修正后大气模式误差的均方差(RMS)由14.09%降至4.05%.研究结果表明,该修正方法可以显著提高大气密度预报精度.   相似文献   

10.
电脉冲除冰系统电磁脉冲力仿真分析   总被引:1,自引:1,他引:0  
为了获得更精确的电脉冲除冰(EIDI)系统中电磁力在飞机蒙皮上的分布及其随时间变化的情况,针对系统的工作原理与工作过程进行了仿真研究。计算分析了EIDI系统电路中电流随时间变化的关系;通过麦克斯韦方程组的求解完成了EIDI系统电磁场的仿真;计算分析了电磁力随时间变化的规律,获得了蒙皮上的磁感应强度分布、涡电流密度分布和瞬态电磁力密度分布。考虑线圈工作时蒙皮对其电感的影响,建立了更接近真实电路的激励加载方法,得到了准确的电磁力变化趋势;考虑趋肤效应对蒙皮厚度方向上涡电流密度、电磁力密度分布的影响,用有限元分析方法使蒙皮上电磁力分布的计算更为全面合理。   相似文献   

11.
太阳活动与热层大气密度的相关性研究   总被引:3,自引:2,他引:1  
为分析太阳活动对热层大气的影响,使用250km,400km,550km高度处热层大气密度与太阳F10.7指数数据,研究了二者的周期变化及相关关系. 结果表明,热层大气密度的变化与太阳活动呈现相似的变化趋势;两者均具有显著的27天及11年周期变化特征,热层大气密度还存在7~11天及0.5年和1年的变化特征,且高度越高越明显;热层大气密度对太阳活动的最佳响应滞后为3天,无论何种地磁活动水平下,400km高度处相关性高于250km,550km处相关性最小,且太阳活动下降相期间高于上升相;250km,400km和550km高度处热层大气密度和太阳活动的统计结果分别为饱和、线性和放大关系;高度越高的热层大气密度对太阳活动响应越敏感.   相似文献   

12.
本文在考虑大气密度(90km高度以下) 随地理纬度、高度及时间(月份)随机变化的基础上,沿卫星的返回轨道建立了随机大气密度的统计模型。并应用该模型产生的随机大气密度样本,进行返回轨道的Monte Corlo法模拟计算。通过对模拟计算得到的返回轨道参数样本的统计处理,本文分析了大气密度变化对卫星返回轨道参数的影响。另外,本文还介绍了近似估计大气密度变化对返回轨道参数影响的影响系数法。  相似文献   

13.
我国火箭探测资料与CIRA 1986稿的比较   总被引:1,自引:1,他引:0  
本文用我国气象火箭探测获得的中层大气风、温度、密度和气压等数据,与国际参考大气模式CIRA 1986稿作了比较.结果看到,我国火箭探测温度数据值在模式给出的平均值剖面上下波动,符合的程度在国际比对偏差范围之内;用探测数据分析得到的风的季节性和声重波强度等与模式给出的描述都很符合.从而说明,用CIRA 1986稿来表征我国上空的中层大气结构是合适的.   相似文献   

14.
本文利用MHD波与日冕大气耦合的磁流体动力学方程组,计算得到冕洞内的日冕大气的温度T、密度N和流速V的分布.根据这些量的分布特点,认为日球基本参数T、N和V的冕洞周变化,可以用冕洞磁场的非径向因子a值,随黑子活动的下降而变小来解释.   相似文献   

15.
基于TIMED/SABER卫星2002—2018年观测的20~100 km大气密度数据,统计获得多年月平均值和标准偏差的全球网格数据。利用网格数据,分析了大气密度的变化特征。以网格数据为基准,计算了USSA76的相对偏差,分析了USSA76相对偏差的分布特征。以网格数据为驱动,将大气密度表征为平均值与大尺度扰动量和小尺度扰动量的加和,大尺度扰动和小尺度扰动分别采用余弦函数和一阶自回归模型表征,初步建立了全球临近空间大气密度模型。通过对比模型仿真值与激光雷达观测值,表明模型仿真值与观测值具有较好的吻合度,验证了建模方法的可行性。利用蒙特卡罗方法可再现给定轨迹上所有可能的大气状态。   相似文献   

16.
为实时评估0~100km高度范围内的大气中子全球分布,对宇宙线在地磁场和大气中的传输过程进行了分析.利用蒙特卡罗方法工具包Geant4,预先计算不同能量的粒子在大气层中产生的次级粒子能谱分布,形成大气次级粒子数据库,并与相关模型进行对比,验证了该数据库的有效性和可靠性.以实测或预报的空间环境参数作为输入,计算同步轨道银河宇宙线和太阳质子事件能谱以及100km高度上的地磁垂直截止刚度,最终得到大气层顶上的粒子能谱.通过对大气次级粒子数据库的线性插值,实现1h分辨率的大气中子能谱和辐射剂量全球分布的实时计算.   相似文献   

17.
基于多模型最优融合的双星定位系统一体化精密定轨方法   总被引:1,自引:0,他引:1  
针对卫星动力学模型复杂且不准,考虑到卫星定轨中待估参数在时间和空间上的相关性,提出了一种基于多模型最优融合的双星定位系统一体化参数建模的近地卫星精密定轨新方法.利用节点自由分布B样条描述卫星运动,实现了对卫星粗略动力学模型的抑制作用;同时结合双星观测模型,使该方法转化为关于求解卫星轨道样条表示参数和定轨系统误差的多模型融合的非线性优化问题;通过引入模型结构确定最优融合权值的选取准则,在最小二乘准则下,采用非线性最优化方法搜寻样条的最优节点分布,得到了待估参数的最优估计,完成了近地卫星的精密定轨.理论分析和仿真计算表明,该方法确实有效,不仅提高了卫星的定轨精度,而且使状态估计的结构更加稳定.   相似文献   

18.
地震活动一直是人类非常关注的自然灾害事件, 其对热层大气密度的影响还不是非常清楚. 2008年5月12日中国四川汶川发生震级8.0级强震事件, 随后, 在6月14日日本本州东部, 7月5日鄂霍次克海和7月19日日本本州东海岸发生震级7.0~7.6级强震事件, 利用期间中国星载大气密度探测器在630 km高度上就位探测的热层大气密度对探测结果进行综合分析, 结果表明, 强地震震源中心区域上空附近热层大气密度出现异常降变. 在时间上, 强地震发生前1~3天内就已开始出现大气密度降变, 强地震发生日附近降变达到谷值, 降变比达0.40~0.65. 这种降变的纬度区域范围震前位于强震中心所处纬度的±3o~±9o, 强震发生当日扩大到±8o~±20o.   相似文献   

19.
本文在指数导电率大气中,在给定电离层电位情况下,考虑雷暴充电电流源以后,解析地求解了稳态电流守恒方程,获得了大气电位分布的解析表达式.考察这一表达式可以看到,雷暴充电对大气电位的影响和电离层电位对大气电位的影响主要都是垂直地起作用的.从观测到的雷暴充电电流密度的数值以及其他性质出发,利用本文得到的解析表达式进行计算可看到,雷暴充电作用能够使电层高度上的电位上升到由观测所推出的电层电位应具有的数值.数例结果还表明,电离层电位能通过对雷暴上空电层电位值的显著影响而对晴天区低层大气电状态发生作用.   相似文献   

20.
"神舟3号"运行高度上大气密度的变化   总被引:4,自引:2,他引:4  
"神舟3号"(SZ-3)大气密度探测器搭载在SZ-3留轨舱上于2002年3月发射入轨,在轨运行期间获得了轨道舱运行高度范围(330-410km)内的大气密度数据.数据分析表明,无明显太阳和地磁扰动时,热层大气密度的主要变化之一是日照和阴影区域之间的涨落变化,最大涨落变化比约为3.0,变化比与太阳和地磁活动程度有关.在2002-04-17和2002-04-19的强地磁扰动时,全球热层大气密度上涨,同时在磁扰峰期探测获得30°N-40°N区域出现密度扰动异常现象.对强地磁扰动在运行轨道高度上大气密度最大涨幅约为60%左右,响应过程在时间上要比地磁扰动过程滞后6-7h,日照和阴影区域中大气密度的响应变化程度明显不同.在太阳活动程度发生变化时,热层大气密度会呈现出明显的正相关变化关系.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号