首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
研究了7501 氰酸酯树脂的工艺和耐热性能,以EW220 布为增强材料,采用RTM 成型工艺制备
了EW220/7501 复合材料层板,研究了其室温和高温力学性能。结果表明:7501 氰酸酯树脂的最低黏度为87
mPa·s,开放期大于10 h,300℃固化后,热分解温度为431℃,Tg 可达421℃;EW220/7501 复合材料室温下具有
良好的力学性能,其中拉伸强度为393 MPa,压缩强度为356 MPa,弯曲强度为602 MPa,层间剪切强度为43
MPa,在300℃下,各项力学性能保持率均≥80%。  相似文献   

2.
研制了一种环氧/ 芳香胺体系,采用DSC、固化反应动力学分析等方法对树脂体系进行了表征,并
对其浇注体、复合材料NOL 环以及Φ150 mm 压力容器性能进行了研究。结果表明,该树脂体系具有优良的浇
注体力学及热性能,其拉伸强度为101 MPa,断裂伸长率达4. 1%,弯曲强度为177 MPa,马丁耐热温度为
142. 2℃;与国产芳纶纤维的界面粘接性能良好,其NOL 环层间剪切强度可以达到52. 1 MPa,制备的复合材料
Φ150 mm 压力容器PV / W 值可达38. 44 km。  相似文献   

3.
针对飞机复合材料加筋层压板结构,设计了含有预埋分层缺陷的复合材料加筋层压板的典型试验件以及压缩试验装置,研究了分层缺陷位置和大小对加筋板压缩强度的影响。研究结果表明:分层缺陷会改变加筋板的破坏模式,浅表分层在压缩过程中表现为局部屈曲模态,局部屈曲强度只有其破坏强度的30%~60%,分层直径增加,局部屈曲强度降低。局部屈曲发生后,加筋板尚可进一步承载,直至层板失稳破坏。本文给出的数据和结论对实际飞机结构设计的参数确定和生产过程中的超差问题处理具有重要参考价值。  相似文献   

4.
将含二氮杂萘酮结构、耐高温可溶解的聚芳醚砜(PPBES) 与聚芳醚腈酮(PPENK) 共混,采用溶
液浸渍法制备了玻璃布增强PPBES/ PPENK 树脂基层压板。讨论了树脂的相容性及树脂配比,研究了共混树
脂含量对PPBES/ PPENK 层压板的室温及150℃弯曲强度、吸水率的影响,对层压板的介电性能、阻燃性能等
进行了测试。结果表明:PPBES 与PPENK 完全相容。当PPBES/ PPENK = 4/6( 质量比),树脂质量分数为
35. 4%时,层压板的综合性能最佳,且150℃的弯曲强度保持率为95. 7%。在1 MHz 下,介电常数为3. 5,tanδ
为0. 0037;在DC 500 V 下,体积电阻率为5. 9×1014Ω·cm;阻燃性能达到V-0 级。  相似文献   

5.
二维机织树脂基复合材料湿热性能研究   总被引:2,自引:0,他引:2  
实验研究了不同铺层厚度的二维机织玻璃纤维织物/环氧胶膜基体复合材料层压板室温和湿热环境下的开孔拉伸和弯曲性能.结果表明,材料弯曲强度具有尺寸效应,弯曲强度随试样铺层厚度增加基本上线性下降,下降率为5.2%/mm;材料平衡吸湿量平均为2.2%,吸湿后基体性能发生退化,退化程度与试样厚度有关.材料达到平衡吸湿后70 ℃,相对湿度85%的湿热环境下,弯曲强度下降严重,其强度保有率平均为31.7%;开孔拉伸强度保有率随试样厚度线性增加,增加率为4.2%/mm,强度保有率平均为70.0%.  相似文献   

6.
设计并选用一种分子结构中带有异氰酸酯基的硅烷偶联剂对石英布进行了表面处理,对比了石英
纤维改性对含硅芳炔树脂复合材料部分力学、介电及耐热性能等的影响。结果表明:偶联剂处理石英纤维后,偶
联剂与石英纤维表面发生化学键合,明显改善石英纤维与含硅芳炔树脂的界面粘接,复合材料的层间剪切强度比
未处理的提高了24.7%,弯曲强度提升了12.4%,偶联剂的加入不会降低复合材料的Tg 和介电性能。  相似文献   

7.
为提高苯并噁嗪(BZ)的热稳定性,通过BZ 与聚硅氮烷制备了一种苯并噁嗪杂化树脂(BZ-H),
并采用模压工艺制备了玻璃布/ BZ-H 复合材料。制备的BZ-H 树脂在70 ~170℃有较低的黏度和聚合温度、
较少的放热量及良好的固化工艺性。其固化物的Tg 为354. 7℃。在N2 气氛下,T5
d 为460℃,900℃ 的残重
(W900℃ )为75. 68%。在空气气氛下, T5
d 为466℃,W900℃ 为16. 39%。玻璃布/ BZ-H 复合材料在室温下的弯曲
强度、模量和层间剪切强度分别为433 MPa、22 GPa 和24 MPa,在350℃下的保留率分别为40%、68%和54%。
SEM 微观形貌观察表明,BZ-H 树脂与纤维间具有良好的粘接作用,该特征赋予了复合材料优良的力学性能。  相似文献   

8.
利用三辊研磨分散技术制备了MWCNT/ E 复合材料。通过调节三辊研磨机入料辊和中辊的间
距,使MWCNT 在环氧树脂中均匀分散。所制备的MWCNT/ E 复合材料与纯环氧树脂相比,拉伸强度提高了
22%,弯曲强度提高了15%,导电性和导热性都得到明显改善。  相似文献   

9.
复合材料接头三维有限元技术研究   总被引:3,自引:0,他引:3  
介绍了复合材料三维单元刚度矩阵,用三维有限元方法计算了复合材料层压耳片接头拉伸、剪切、弯曲载荷的问题;给出了孔边应力分布及弯曲时层间剪应力分布。结果表明:当载荷平行于铺层且沿厚度均匀分布时,应力沿厚度方向变化不大,主要与铺层角度有关;当载荷不平行铺层时,层间剪切应力和拉伸应力较大,是接头破坏的主要原因。  相似文献   

10.
RFI工艺成型两种环氧树脂基复合材料性能比较   总被引:1,自引:0,他引:1       下载免费PDF全文
采用RFI工艺分别成型了648和5228A环氧树脂基复合材料层合板,其增强材料为碳纤维无屈曲织物,铺层方式为[(0,90)/( 45)]s;测试了两组层舍板的拉伸性能、弯曲性能和层间剪切性能并做了比较分析;对破坏形式和机理进行了探讨.结果表明:5228A相对于648环氧树脂膜有较宽的低黏度区域,较长的凝胶时间;5228A与648层合板相比,拉伸强度高106%,拉伸模量、泊松比接近;弯曲强度高58%,弯曲模量高16%;层间剪切强度高62%.  相似文献   

11.
以预氧丝网胎体积分数为35%、40%和45%针刺织物为坯体,经数次沥青浸渍/炭化、高温石墨化处理后制备C/C复合材料,测定并分析这三种材料的拉伸、压缩、弯曲和剪切强度;采用扫描电子显微镜对其断口形貌进行观察,研究预氧丝网胎体积分数对C/C复合材料力学性能的影响。结果表明:材料的z向力学性能(除了压缩强度)随着预氧丝网胎体积分数的增加呈单调递增关系,材料的xy向力学性能受预氧丝网胎体积分数影响较小。扫描电镜观察显示:材料z向强度主要与针刺形成的轴向纤维束多少、分布等有关。  相似文献   

12.
一种交织铺层结构层合板性能   总被引:1,自引:1,他引:0       下载免费PDF全文
结合复合材料自动纤维铺放(AFP)技术,提出了一种交织铺层结构层合板成型方法,制备了非交织、交织正交层合板、非交织、两向交织和四向交织准各向同性层合板复合材料,并对交织铺层结构复合材料的层间结构和性能进行了分析研究。结果表明:交织正交层合板的拉伸、压缩、弯曲性能较非交织板性能均有所下降,但其层间剪切性能有明显提高,提高幅度约为16%;随着交织铺层组厚度的增加,交织层合板的拉伸性能呈下降趋势;交织层合板的开孔后拉伸、开孔后压缩和冲击后压缩强度保持率均高于非交织板,且冲击后分层损伤面积明显低于非交织板。交织铺层结构层合板相对于普通非交织层合板具有更好的损伤容限能力。  相似文献   

13.
大载荷缠绕杆件的拉伸和压缩性能   总被引:2,自引:2,他引:0       下载免费PDF全文
采用缠绕成型的方法制备了碳纤维/环氧树脂复合材料杆件,对杆件进行了拉伸、压缩试验,并且对缠绕用原材料的性能进行测试。结果表明:缠绕原材料的拉伸及层剪性能优异,缠绕成型的复合材料杆件力学性能较高,压缩与拉伸强度分别大于400与240 MPa,杆件端头是应力集中区域,端头的设计连接以及复合材料的层间性能是影响复合材料杆件拉伸、压缩性能的重要因素。  相似文献   

14.
考虑温度环境下树脂基复合材料力学性能及模型研究   总被引:2,自引:1,他引:1  
采用试验的方法研究了T300/QY8911-Ⅳ复合材料不同温度环境(室温、160,200,260℃)下的纵向拉伸、横向拉伸及面内切变力学性能,探讨了材料的模量、强度随温度变化的规律并提出了相应的力学模型.试验结果表明:在室温至200℃复合材料纵向拉伸模量、强度受温度影响较小,拉伸模量最大变幅为2.82%,强度为1.41%;当温度升高到260℃时,由于树脂基体变质,材料纵向拉伸模量与强度均下降,模量下降5.85%,强度下降7.01%(均相对200℃);横向拉伸和面内切变模量、强度受温度的影响较大,在160℃范围内,材料的平均模量分别下降了49.21%和70.34%,强度下降了38.49%和44.85%.当温度升至200℃时,材料的横向拉伸及面内切变模量与强度进一步下降,模量降幅为25.13%和38.30%,强度降幅为0.41%和15.95%.拟合结果表明:3个力学模型均适用于不同温度、载荷类型下的数据分布规律,但模型Ⅱ与模型Ⅲ对数据的拟合更准确.   相似文献   

15.
不同温度下树脂基复合材料层合板力学性能试验   总被引:1,自引:1,他引:0  
宋健  温卫东 《航空动力学报》2016,31(4):1006-1018
通过试验的方法研究了双马来酰亚胺树脂浇注体及碳纤维增强树脂基复合材料单向层合板在不同温度下的静态力学性能,并讨论了温度对材料力学行为的影响,最后对材料断口形貌进行了分析.试验结果表明:纯树脂浇注体拉伸、压缩性能受温度影响比较明显,且拉、压性能不同.对于拉伸性能,相对室温均值(20℃),160℃环境下模量均值及强度均值降幅分别为31.73%,44.71%,200℃时又分别下降了21.15%,20.37%;对于压缩性能,相对室温均值,160℃下模量及强度均值分别下降了26.67%,44.40%,而200℃时继续下降了6.66%,12.40%.层合板的纵向拉伸性能受温度影响较小,在200℃内,纵向模量与强度最大变幅分别为2.82%和2.53%,且材料断口从室温下的"毛刷"状变为了沿轴向劈断.材料的横向及面内剪切性能受温度影响较大,且应力-应变曲线存在明显非线性,但横向试件断口平整、面内剪切试件无明显紧缩现象,即均表现为脆性断裂特征.另外,相对室温均值,在160℃时,横向及面内切变模量分别下降约32.96%,41.25%,强度分别下降约15.83%,30.96%;在200℃时,横向及面内剪切性能继续下降,模量降幅为16.83%,22.52%,强度降幅12.24%,11.01%.   相似文献   

16.
基于氧化硅气凝胶粉体材料内部的微结构特征,建立了能反映其特征结构的多尺度力学模型,利
用分子动力学方法模拟了氧化硅气凝胶的纳米多孔结构和拉伸性能,进一步利用离散元方法模拟了粉体材料
的模压成形和多轴压缩应力-应变曲线。分子动力学模拟表明,气凝胶密度越低,其分形维数越小。此外,离
散元模拟表明,氧化硅气凝胶粉体材料的弹性模量比对应的氧化硅气凝胶弹性模量低,压缩强度比对应气凝胶
的拉伸强度高;随着围压的增加,氧化硅气凝胶粉体材料的压缩强度增加。  相似文献   

17.
以空间推进系统用高压复合材料气瓶的开发为背景,开展了PBO纤维的应用研究。分别对PBO/D-3和PBO/D-8复合材料力学性能进行了测试,获得了性能最佳的复合材料配方体系。在此基础上,将PBO复合材料用于空间推进系统用铝内衬复合材料高压气瓶,开展了2.4 L铝内衬高压气瓶的研制。结果表明:PBO(HM)/D-8复合材料力学性能最佳,其拉伸强度与NOL层间剪切强度分别高达1 397 MPa和20.2MPa,采用其缠绕的复合材料气瓶结构系数高达64.5 km。  相似文献   

18.
缝纫对复合材料层合板强度和抗冲击性能的影响   总被引:8,自引:2,他引:6  
主要研究了缝纫对复合材料层合板的强度和抗冲击性能的影响。通过对不同缝纫密度、缝纫方向、缝线材料和缝线直径的试件进行试验研究 ,分析了缝纫参数对层合板的压缩强度、层间剪切强度、断裂韧性 GIC和 GIIC、低速冲击损伤以及冲击后压缩 ( CAI)强度的影响。结果表明 :缝纫使层合板的 GIC和 GIIC有明显提高 ;随缝纫密度的增大 ,层间剪切强度和 CAI强度有显著提高 ,冲击分层损伤面积有一定程度的减小 ;但它们与缝线的直径关系不大。  相似文献   

19.
Results of exerimental studies for composite Z-crimp core geometry impact on strength under transverse compression and longitudinal shear are presented. Recommendations are given concerning selection of core structural parameters to increase its strength for the specified types of loading at the same volumetric density. Mechanical properties of panels with different composite cores are compared.  相似文献   

20.
焊接方式对铝合金搅拌摩擦焊T 型接头性能的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
采用4种规格的搅拌头进行了2A70-T6铝合金T型接头搅拌摩擦焊试验,并对焊缝横截面进行了观察以及焊缝抗拉强度的测试.结果表明:焊缝中前进侧熔合过渡区的金属变形比返回侧剧烈,焊缝断裂往往发生在前进侧;在相同的焊接参数下,单道焊缝的焊核宽度与抗拉强度随着搅拌针直径的增大而增大,但增大的幅度较小,并列焊的焊缝抗拉强度仅为单道焊缝的93%左右;为了获取相同宽度的焊核,采用加粗搅拌针单道焊比并列焊更具有优势.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号