首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The process of biotic turnover in a closed ecological system (CES) with an external energy flow was analyzed by mathematical modeling of the biotic cycle formation. The formation of hierarchical structure in model CESs is governed by energy criteria. Energy flow through the ecosystem increases when a predator is introduced into a "producer-reducer" system at steady state. Analysis of the model shows that under certain conditions the presence of the primary predator with its high mineralization ability accelerates the biotic turnover measured by primary production. We, therefore, conclude that for every system it is possible to find a suitable predator able to provide the system with a higher biotic turnover rate and energy consumption. Grant numbers: 99-04-96017/2000.  相似文献   

2.
Using biotic turnover of substances in trophic chains, natural and artificial ecosystems are similar in functioning, but different in structure. It is necessary to have quantitative criteria to evaluate the efficiency of artificial ecosystems (AES). These criteria are dependent on the specific objectives for which the AES are designed. For example, if AES is considered for use in space, important criteria are efficiency in use of mass, power, volume (size) and human labor and reliability. Another task involves the determination of quantitative criteria for the functioning of natural ecosystems. To solve the problem, it is fruitful to use a hierarchical approach suitable for both individual links and the ecosystem as a whole. Energy flux criteria (principles) were developed to estimate the functional activities of biosystems at the population, community and ecosystem levels. A major feature of ecosystems as a whole is their biotic turnover of matter the rate of which is restricted by the lack of limiting substances. Obviously, the most generalized criterion is to take into account the energy flux used by the biosystem and the quantity of limiting substance included in its turnover. The use of energy flux by ecosystem, E(USED)--is determined from the photoassimilation of CO2 by plants (per time unit). It can be approximately estimated as the net primary production of photosynthesis (NPP). So, the ratio of CO2 photoassimilation rate (sometimes, measured as NPP) to the total mass of limiting substrate can serve as a main universal criterion (MUC). This MUC characterizes the specific cycling rate of limiting chemical elements in the system and effectiveness of every ecosystem including the global Biosphere. Comparative analysis and elaboration of quantitative criteria for estimation of natural and artificial ecosystems activities is of high importance both for theoretical considerations and for real applications.  相似文献   

3.
Different versions of manned closed ecosystems (CES) based on photosynthesis of unicellular and/or higher plants and chemosynthesis or bacteria are considered. Different versions of CES have been compared for applying them on Earth, Moon, Mars and Venus orbital stations, for Mars missions and planetary stations as well as to provide high-quality life in extreme conditions on the Earth. In microgravity [correction of mycrogravity] we recommend CES with unicellular organisms based on photosynthesis or chemosynthesis (depending of the availability of the light or electric energy). For the planetary stations with Moon gravity and higher CES with higher plants are recommended. Improvement of indoor air quality by CES biotechnology is considered.  相似文献   

4.
Plant lighting is a critical issue for cost effectiveness of bioregenerative systems. A plant lighting system using sunlight has been investigated and compared to systems using electrical lighting. Co-generation of electricity and use of in situ resource utilization (ISRU) were also considered. The fixed part of equivalent system mass was found to be reduced by factors of from 3.1 to 3.9, according to the mission assumptions. The time-dependent part of equivalent system mass was reduced by a smaller value, of about 1.05. Cost effectiveness of bioregeneration has been compared to the cost of shipping food. Break-even times for different Lunar and Mars missions were generally in the order of 2–10 years, and were quite sensitive to the assumptions. There is significant scope for future refinement of these values, and work is ongoing.  相似文献   

5.
Wheat was cultivated on soil-like substrate (SLS) produced by the action of worms and microflora from the inedible biomass of wheat. After the growth of the wheat crop, the inedible biomass was restored in SLS and exposed to decomposition ("biological" combustion) and its mineral compounds were assimilated by plants. Grain was returned to the SLS in the amount equivalent to human solid waste produced by consumption of the grain. Human wastes (urine and feces) after physicochemical processing turned into mineralized form (mineralized urine and mineralized feces) and entered the plants' nutrient solution amounts equal to average daily production. Periodically (once every 60-70 days) the nutrient solution was partly (up to 50%) desalinated by electrodialysis. Due to this NaCl concentration in the nutrient solution was sustained at a fixed level of about 0.26%. The salt concentrate obtained could be used in the human nutrition through NaCl extraction and the residuary elements were returned through the mineralized human liquid wastes into matter turnover. The control wheat cultivation was carried out on peat with use of the Knop nutrient solution. Serial cultivation of several wheat vegetations within 280 days was conducted during the experiment. Grain output varied and yield/harvest depended, in large part, upon the amount of inedible biomass returned to SLS and the speed of its decomposition. After achieving a stationary regime, (when the quantity of wheat inedible biomass utilized during vegetation in SLS is equal to the quantity of biomass introduced into SLS before vegetation) grain harvest in comparison with the control was at most 30% less, and in some cases was comparable to the control harvest values. The investigations carried out on the wheat example demonstrated in principle the possibility of long-term functioning of the LSS photosynthesizing link based on optimizations of biological and physicochemical methods of utilization of the human and plants wastes. The possibilities for the use of these technologies for the creation integrated biological-physicochemical LSS with high closure degree of internal matter turnover are discussed in this paper.  相似文献   

6.
The purpose of this work was to develop technology for recycling NaCl containing in human liquid waste as intrasystem matter in a bioregenerative life support system (BLSS). The circulation of Na+ and Cl excreted in urine is achieved by inclusion of halophytes, i.e. plants that naturally inhabit salt-rich soils and accumulate NaCl in their organs. A model of Na+ and Cl recycling in a BLSS was designed, based on the NaCl turnover in the human–urine–nutrient solution–halophytic plant–human cycle. The study consisted of (i) selecting a halophyte suitable for inclusion in a BLSS, and (ii) determining growth conditions supporting maximal Na+ and Cl accumulation in the shoots of the halophyte growing in a nutrient solution simulating mineralized urine. For the selected halophytic plant, Salicornia europaea, growth rate under optimal conditions, biomass production and quantities of Na+ and Cl absorbed were determined. Characteristics of a plant production conveyor consisting of S.europaea at various ages, and allowing continuity of Na+ and Cl turnover, were estimated. It was shown that closure of the NaCl cycle in a BLSS can be attained if the daily ration of fresh Salicornia biomass for a BLSS inhabitant is approximately 360 g.  相似文献   

7.
Plants in experiments on "man-higher plants" closed ecosystem (CES) have been demonstrated to have inhibited growth and reduced productivity due to three basic factors: prolonged usage of a permanent nutrient solution introduction into the nutrient medium of intra-system gray water, and closure of the system. Gray water was detrimental to plants the longer the nutrient solution was used. However, higher plant growth was mostly affected by the gaseous composition of the CES atmosphere, through accumulation of volatile substances.  相似文献   

8.
Higher plants are likely to play a major role in bioregeneration systems for food, air and water supplies. Plants may also contribute by the removal of toxic organic substances from the air of a closed environment. Dieffenbachia amoena plants were exposed to 0 to 1.2 x 10(6) micrograms toluene m-3 at light intensities of 35 and 90 micromoles m-2 s-1 in sealed chambers. Toluene removal, photosynthesis and respiration were measured. An increased light intensity increased the rate of toluene removal five-fold over the rate at the lower intensity; the kinetics suggest active regulation by the plant. The removal rate saturated at 2700 micrograms toluene h-1 at the lower intensity and failed to saturate at the higher intensity. Toluene exposure inhibited photosynthesis and respiration only transiently and without correlation to toluene concentration. These plants can act as efficient scavengers of toluene in a contaminated environment.  相似文献   

9.
The term Closed Ecological System (CES) is in wide use. However there is no generally accepted measure of the closure of ecological systems. In order to obtain reproducibility of experiments with natural and man-made CES (with respect to degree of closure) some universal estimate needs to be developed. Understanding ecological systems as a network and closure as the degree of matter recycling allows the use of matrix graphs. Graphs are very natural forms for the presentation of the network of matter flows in ecosystems. An estimate equal to the sum of products of weights of oriented edges that constitute contour is suggested as a measure of the degree of closure in ecosystems. It is shown that this estimate can be uniformly applied to ecosystems of arbitrary size and configuration of flows.  相似文献   

10.
As part of the ESA-funded MELiSSA program, the suitability, the growth and the development of four bread wheat cultivars were investigated in hydroponic culture with the aim to incorporate such a cultivation system in an Environmental Control and Life Support System (ECLSS). Wheat plants can fulfill three major functions in space: (a) fixation of CO2 and production of O2, (b) production of grains for human nutrition and (c) production of cleaned water after condensation of the water vapor released from the plants by transpiration. Four spring wheat cultivars (Aletsch, Fiorina, Greina and CH Rubli) were grown hydroponically and compared with respect to growth and grain maturation properties. The height of the plants, the culture duration from germination to harvest, the quantity of water used, the number of fertile and non-fertile tillers as well as the quantity and quality of the grains harvested were considered. Mature grains could be harvested after around 160 days depending on the varieties. It became evident that the nutrient supply is crucial in this context and strongly affects leaf senescence and grain maturation. After a first experiment, the culture conditions were improved for the second experiment (stepwise decrease of EC after flowering, pH adjusted twice a week, less plants per m2) leading to a more favorable harvest (higher grain yield and harvest index). Considerably less green tillers without mature grains were present at harvest time in experiment 2 than in experiment 1. The harvest index for dry matter (including roots) ranged from 0.13 to 0.35 in experiment 1 and from 0.23 to 0.41 in experiment 2 with modified culture conditions. The thousand-grain weight for the four varieties ranged from 30.4 to 36.7 g in experiment 1 and from 33.2 to 39.1 g in experiment 2, while market samples were in the range of 39.4–46.9 g. Calcium levels in grains of the hydroponically grown wheat were similar to those from field-grown wheat, while potassium, magnesium, phosphorus, iron, zinc, copper, manganese and nickel levels tended to be higher in the grains of experimental plants. It remains a challenge for future experiments to further adapt the nutrient supply in order to improve senescence of vegetative plant parts, harvest index and the composition of bread wheat grains.  相似文献   

11.
12.
Procedures and results are presented concerning the growth of wheat plants with variable partial pressures of O2 and N2. Data demonstrate that some growth occurs in pressures as low as 0.1 atmosphere. The growth was similar or higher at 200 mb (0.2 atmosphere) than in normal atmosphere but the development was different. Advantages of the low pressure cultivation, especially in the absence of nitrogen, are discussed, including better ratio volume/mass of plant cultivation module; lower losses of gases by leakage; easier management of photosynthetic oxygen produced by plants.  相似文献   

13.
A continual model of humification and mineralization of soil organic matter (SOM) formed under the conditions of a Lunar base from biological waste materials is proposed. The model parameters corresponding to the conditions of several Earths climatic regions are estimated. The time necessary for the formation of organic matter in the soil based on regolith and higher plant residues has been evaluated. Soil formation under tropical conditions are shown to be the most appropriate for Lunar base CELSS due to high matter turnover rate, relatively short formation time, minimum deposited mass, and satisfactory predictability of expected soil parameters.  相似文献   

14.
There is a need for reliable methods of measuring the level and distribution of water in the solid substrates that are used for growing plants in space. In a microgravity environment, water distribution is governed generally by capillary forces. Arcillite is the solid substrate used in the ASTROCULTURE (TM) system which was developed for growing plants in space. The goal of this study is to evaluate the applicability of heat pulse moisture sensors for measuring moisture levels in Arcillite. The ASTROCULTURE system uses suction as a means of controlling the moisture level in Arcillite, but the spatial distribution of the moisture is left unknown. Studies of the moisture content in a cell experiment were conducted to calibrate a heat pulse moisture sensor and then the sensor was used in a suction experiment to verify moisture content and distribution. Results of the studies demonstrate that head pulse moisture sensors can be used to monitor moisture content and distribution within the root module of the ASTROCULTURE system.  相似文献   

15.
Life support approaches for Mars missions are evaluated using an equivalent system mass (ESM) approach, in which all significant costs are converted into mass units. The best approach, as defined by the lowest mission ESM, depends on several mission parameters, notably duration, environment and consequent infrastructure costs, and crew size, as well as the characteristics of the technologies which are available. Generally, for the missions under consideration, physicochemical regeneration is most cost effective. However, bioregeneration is likely to be of use for producing salad crops for any mission, for producing staple crops for medium duration missions, and for most food, air and water regeneration for long missions (durations of a decade). Potential applications of in situ resource utilization need to be considered further.  相似文献   

16.
The effects of clinostating on physiological processes and biochemical characteristics of wheat plants (Triticum aestivum L.) both healthy and infected by the wheat streak mosaic virus (WSMV) were studied. In six experiments, each lasting over 30 days, healthy and infected plants of the dwarf Apogee variety were grown under conditions of continuous horizontal and vertical clinostating with 2 rpm at 21 +/- 2 degrees C and 6000 1x (the optimal moisture of a substrate being maintained). The control variants (healthy and infected) were simultaneously grown under the same conditions of temperature and illumination in stationary containers and in open pots. During the experiment, visual observations were carried out over the state of tested plants. After completing the experiment, biometric indices, pigment, carbohydrate and dry matter contents were determined in all the plants. It was shown that clinostating sharply reduced the reproductive function of healthy plants and considerably affected their biomass (productivity) and concentration of chlorophylls and sugars. The viral infection resulted in further reduction of these characteristics. In control variants the viral effect was more significant. We speculate that clinostating reduced the rate of reproduction and spread of the virus.  相似文献   

17.
An experimental model of a biological life support system was used to evaluate qualitative and quantitative parameters of the internal mass exchange. The photosynthesizing unit included the higher plant component (wheat and radish), and the heterotrophic unit consisted of a soil-like substrate, California worms, mushrooms and microbial microflora. The gas mass exchange involved evolution of oxygen by the photosynthesizing component and its uptake by the heterotroph component along with the formation and maintaining of the SLS structure, growth of mushrooms and California worms, human respiration, and some other processes. Human presence in the system in the form of "virtual human" that at regular intervals took part in the respirative gas exchange during the experiment. Experimental data demonstrated good oxygen/carbon dioxide balance, and the closure of the cycles of these gases was almost complete. The water cycle was nearly 100% closed. The main components in the water mass exchange were transpiration water and the watering solution with mineral elements. Human consumption of the edible plant biomass (grains and roots) was simulated by processing these products by a unique physicochemical method of oxidizing them to inorganic mineral compounds, which were then returned into the system and fully assimilated by the plants. The oxidation was achieved by "wet combustion" of organic biomass, using hydrogen peroxide following a special procedure, which does not require high temperature and pressure. Hydrogen peroxide is produced from the water inside the system. The closure of the cycle was estimated for individual elements and compounds. Stoichiometric proportions are given for the main components included in the experimental model of the system. Approaches to the mathematical modeling of the cycling processes are discussed, using the data of the experimental model. Nitrogen, as a representative of biogenic elements, shows an almost 100% closure of the cycle inside the system. The proposed experimental model of a biological system is discussed as a candidate for potential application in the investigations aimed at creating ecosystems with largely closed cycles of the internal mass exchange. The formation and maintenance of sustainable cycling of vitally important chemical elements and compounds in biological life support systems (BLSS) is an extremely pressing problem. To attain the stable functioning of biological life support systems (BLSS) and to maintain a high degree of closure of material cycles in than, it is essential to understand the character of mass exchange processes and stoichiometnc proportions of the initial and synthesized components of the system.  相似文献   

18.
Processes which produce slow changes in air composition in a closed ecological system (CES) may not be noticed if the leak rate of the CES is significant. Dilution of the system’s air with outside air can mask these processes. A tightly closed CES provides the opportunity for slow changes to accumulate over time and be observed and measured. Biosphere 2 (volume 200,000 m3) had a low leak rate of less than 10 percent per year. Oxygen declined slowly at varying rates reflecting seasonal influences, which averaged to about 140 ppm per day during the first 16 months of the two-year closure. Computer simulations of the observed rate of oxygen loss combined with other hypothetical leak rates suggest that the decline would have been hidden by a leak rate as low as one percent per day. Sealing Biosphere 2 involved rigorous design specifications and inclusion of two expansion chambers (called “lungs”) to accommodate expansion/contraction of the atmosphere, which enabled limiting the pressure difference between inside and outside atmospheres to the range of ±8 Pa (0.08 mBar). Measurement of leak rate was by two methods: the first, measuring the rate of deflation of the lungs while holding a constant elevated pressure differential enabled calculation of an estimated leak rate within the usual operating pressure differential range; the second was to measure the progressive dilution of trace gases spiked into the atmosphere. Both methods confirmed leakage to be less than 10 percent per year. Operational data from the 40 m3 Laboratory Biosphere is used to illustrate how normal variations of temperature, humidity and barometric pressure would combine to force leakage and rapidly dilute the internal atmosphere if it were not equipped with a lung. It is demonstrated that very high degrees of closure for a CES enable experimental observation of small imbalances in atmospheric cycles or slow accumulation of trace gases that could otherwise be masked by dilution with atmosphere external to the CES.  相似文献   

19.
To increase the degree of closure of biological life support systems of a new generation, we used vermicomposting to involve inedible phytomass in the intra-system mass exchange. The resulting product was a soil-like substrate, which was quite suitable for growing plants (Manukovsky et al. 1996, 1997). However, the soil like substrate can be regarded as a candidate for inclusion in a system only after a comprehensive examination of its physical, chemical, and other characteristics. An important criterion is the ability of the soil-like substrate to supply the necessary mineral elements to the photosynthesizing component under the chosen cultivation conditions. Thus, the purpose of this work was to study the feasibility of enhancing the production activity of wheat and radish crops by varying the intensity of photosynthetically active radiation, without decreasing the harvest index. The increase of light intensity from 920 to 1150 micromoles m-2 s-1 decreased the intensity of apparent photosynthesis of the wheat crops and slightly increased the apparent photosynthesis of the radish crops The maximum total and grain productivity (kg/m2) of the wheat crops was attained at the irradiance of 920 micromoles m-2 s-1. Light intensity of 1150 micromoles m-2 s-1 decreased the productivity of wheat plants and had no significant effect on the productivity of the radish crops (kg/m2) as compared to 920 micromoles m-2 s-1. The qualitative and quantitative composition of microflora of the watering solution and substrate was determined by the condition of plants, developmental phase and light intensity. By the end of wheat growth under 1150 micromoles m-2 s-1 the numbers of bacteria of the coliform family and phytopathogenic bacteria in the watering solution and substrate were an order of magnitude larger than under other illumination conditions. The obtained data suggest that the cultivation of plants in a life support system on soil-like substrate from composts has a number of advantages over the cultivation on neutral substrates, which require continual replenishment of the plant nutrient solution from the system's store to complement the macro- and micro-elements. Yet, a number of problems arise, including those related to the controlling of the production activity of the plants by the intensity of photosynthetically active radiation. It is essential to understand why the intensity of production processes is limited at higher irradiation levels and to overcome the factors responsible for this, so that the soil-like substrate could have an even better chance in the competition for the best plant cultivation technology to be used in biological life support systems.  相似文献   

20.
This study addresses competition between the Paramecium bursaria and zoochlorella-endosymbiosis and the infusoria Paramecium caudatum in a closed aquatic system. The system is a natural model of a simple biotic cycle. P. bursaria consumes glucose and oxygen released by its zoochlorella and releases nitrogenous compounds and carbon dioxide necessary for algal photosynthesis. P. caudatum was fed on bacteria. It was shown that the infusoria P. bursaria united in one cycle with Chlorella had a higher competitive ability than P. caudatum. With any initial percentage of the infusoria in the mixed culture, the end portion of P. bursaria reached 90-99%, which was significantly higher than the end potion of the P. caudatum population. It is assumed that the sustenance expenditures of P. caudatum were greater than those of the endosymbiotic paramecium, i.e. the closing of the components into a biotic cycle leads to a decrease in sustenance expenditures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号