首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We expect a variety of dynamic phenomena in the quiescent non-flaring corona. Plasma flows, such as siphon flows or convective flows of chromospheric material evaporating into the corona, are expected whenever a pressure differences is established either between the footpoints or between the coronal and chromospheric segments of a coronal loop. Such flows can induce phenomena of spatial and temporal brightness variability of the corona. In particular, evaporation induces a net mass input into the corona and consequently coronal density enhancements. Flows are also expected in the regions where energy is released during magnetic reconnection. From the observational point of view the dynamics of the solar atmosphere has been investigated in great detail mostly in the lower transition region with the HRTS, and during flares with theSolar Maximum Mission andYohkoh. The high spectral, temporal and spatial resolution of theSOHO ultraviolet spectrometers should enable us in the near future to fill the gap providing a continuous coverage from the chromosphere to the corona, in the 104–106 K domain, and therefore to best study the dynamics throughout the solar atmosphere.  相似文献   

2.
Our present knowledge on the average physical properties of the chromosphere and of the transition region between chromosphere and corona is reviewed. It is recalled that shock wave dissipation is responsible for the high temperatures observed in the chromosphere and corona and that, due to the non-linear character of the dissipation mechanism, no satisfactory explanation of the structure of the outer solar layers has yet been given. In this paper, the main emphasis is on the observations and their interpretation.Evidence for the non-spherically symmetric structure of the atmosphere is given; the validity of interpreting the observations with the help of a fictitious spherically symmetric atmosphere is discussed.The chromosphere and the transition region are studied separately: for each region, the energy balance is considered and recent homogeneous models derived from ultra-violet, infrared and radio observations are discussed.It is stressed that although in the chromosphere, a study of the radiative losses may lead to the determination, as function of height, of the amount of mechanical energy dissipated as function of height, a more detailed analysis of the velocity field is necessary to find the periods and the wavelengths of the waves responsible for the heating. The methods used for wave detection and some results are presented.Observational and theoretical evidence is given for the non-validity of the assumption of hydrostatic equilibrium which is commonly used in modeling the transition region.We conclude that a better understanding of the heating mechanism will come through a higher spatial resolution (less than 0.2) and more accurate absolute measurements, rather than from sophisticated hydrodynamical calculations.  相似文献   

3.
Spartan 201 is a shuttle deployed spacecraft that is scheduled to perform ultraviolet spectroscopy and white light polarimetry of the extended solar corona during two 40 hour missions to occur in September 1994 and August 1995. The spectroscopy is done with an ultraviolet coronal spectrometer which measures the intensity and spectral line profile of HI Ly up to heliocentric heights of 3.5 solar radii. It also measures the intensities of the OVI doublet at 1032 and 1037 Å and of Fe XII at 1242 Å. The HI Ly line profile measurements are used to determine the random velocity distribution of coronal protons along the line-of-sight. The absolute HI Ly intensities can be used together with electron densities from the white light coronagraph to estimate electron temperatures from hydrogen ionization balance calculations, and bulk outflow velocities from models of Doppler dimmed resonant scattering. Intensities of minor ion lines are used to determine coronal abundances and outflow velocities of O5+. Ultraviolet spectroscopy of extended coronal regions from the 11 April 1993 mission of Spartan 201 are discussed.  相似文献   

4.
Models of the transition region — corona — solar wind system are investigated in order to find the coronal helium abundance and to study the role played by coronal helium in controlling the the solar wind proton flux. The thermal force on -particles in the transition region sets the flow of helium into the corona. The frictional coupling between -particles and protons and/or the electric polarization field determines the proton flux in the solar wind as well as the fate of the coronal helium content.  相似文献   

5.
High spatial (1) and temporal (20 s) resolution UV spectroscopy of the Sun has been carried out with a new instrument flown on sounding rockets. These observations reveal a multitude of new highly energetic phenomena in the outer solar atmosphere which may play a decisive rôle in the mechanical energy balance of the chromosphere, transition zone and corona.Proceedings of the Conference Solar Physics from Space, held at the Swiss Federal Institute of Technology Zurich (ETHZ), 11–14 November 1980.  相似文献   

6.
The radio telemetry links between Earth and a spacecraft near superior conjunction penetrate the corona at ranges well within the acceleration regime of the solar wind. Occultation experiments in the solar corona have been performed on many interplanetary missions beginning with the Mariner and Pioneer series and extending up to the more recent data on Helios, Viking, and Voyager. The changes in group and phase velocity of the radio signal are measured to determine the total electron content of the corona and its fluctuations. The broadening of the carrier signal may be used in combination with the electron content data to derive a solar wind velocity profile. The wave number spectrum of electron density fluctuations in the corona may be inferred from amplitude and phase scintillations of the received signal. Linearly polarized signals, which are rotated along the propagation path by the Faraday effect, can provide information on the coronal magnetic field and its variations.Paper presented at the IX-th Lindau Workshop The Source Region of the Solar Wind.  相似文献   

7.
This paper is a review of the basic theoretical dynamical properties of an atmosphere with an extended temperature strongly bound by gravity. The review begins with the historical developments leading up to the realization that the only dynamical equilibrium of an atmosphere with extended temperature is supersonic expansion. It is shown that sufficient conditions for supersonic expansion are T(r) declining asymptotically less rapidly than 1/r, or the density at the base of the corona being less than N b given by (40) if no energy is available except through thermal conductivity, or the temperature falling within the limits given by (18) if T N -1 throughout the corona. Less extended temperatures lead to equilibria which are subsonic or static. The hypothetical case of a corona with no energy supply other than thermal conduction from its base is considered at some length because the equations may be solved by analytical methods and illustrate the transition from subsonic to supersonic equilibrium as the temperature becomes more extended. Comparison with the actual corona shows that the solar corona is actively heated for some distance into space by wave dissipation.The dynamical stability of the expanding atmosphere is demonstrated, and in a later section the radial propagation of acoustic and Alfvén waves through the atmosphere and wind is worked out. The calculations show that the magnetometer will probably detect waves more easily than the plasma instrument, but that both are needed to determine the mode and direction of the wave. An observer in the wind at the orbit of Earth can listen to disturbances generated in the corona near the sun and in turbulent regions in interplanetary space.The possibility that the solar corona is composed of small-scale filaments near the sun is considered. It is shown that such filamentary structure would not be seen at the orbit of Earth. It is pointed out that the expansion of a non-filamentary corona seems to lead to too high a calculated wind density at the orbit of Earth to agree with the present observations, unless T(r) is constant or increases with r. A filamentary corona, on the other hand, would give the observed wind density for declining T(r).It is shown that viscosity plays no important role in the expansion of an atmosphere either with or without a weak magnetic field. The termination of the solar wind, presumably between 10–103 AU, is discussed briefly. The interesting development here is the interplanetary L recently observed, which may come from the interstellar neutral hydrogen drifting into the outer regions of the solar wind.Theory is at the present time concerned with the general dynamical principles which pertain to the expansion equilibrium of an atmosphere. It is to be expected that the rapid progress of direct observations of the corona and wind will soon permit more detailed studies to be carried out. It is important that the distinction between detailed empirical models and models intended to illustrate general principles be kept clearly in mind at all times.This work was supported by the National Aeronautics and Space Administration under Grant NASA-NsG-96-60.  相似文献   

8.
To the present time, no structure has been identified immediately above the chromosphere in sunspots that is invariably present and that thus might be called the transition region and corona over the spot. But the magnetic flux tubes emerging from spots give rise to many of the plasma filled loops that characterize the active region corona. These emit strongly from ions characteristic of the transition region, or the corona, but seldom both simultaneously. This paper presents an overview of the morphology, evolution and theory of these structures.Invited review presented at the Joint Meeting of IAU Commissions 10, 12, and 44, The MHD of Sunspots, in Montreal, 20 August 1979.  相似文献   

9.
A technique to derive the coronal density irregularity factor , wheren is the electron density, has been proposed by Fineschi and Romoli (1993). This technique will exploit the unique UVCS capability of cotemporal and cospatial measurements of both UV line radiation and K-coronal polarized brightness,pB.The ratio of the measured H I Lyman (Ly-) line intensity to the resonant-scattering dominated H I Lyman (Ly-) intensity can be used to extract the collisional component of the Ly-. This component yields an estimate of . The quantity is then obtained from the UVCS white-light K-coronal measurements.We present simulated observations of the UVCS for coronal atmosphere models with different filling factors and electron density profiles, and for different coronal structures (e.g., coronal holes, streamers). These simulations will show how the proposed technique may be used to probe inhomogeneities of the solar corona.  相似文献   

10.
We review the structure and dynamics of the solar chromosphere with emphasis on the quiet Sun and properties that are relevant to element fractionation mechanisms. Attention is given to the chromospheric magnetic field, its connections to the photosphere, and to the dynamical evolution of the chromosphere. While some profound advances have been made in the “unmagnetized” chromosphere, our knowledge of the magnetically controlled chromosphere, more relevant for the discussion of element fractionation, is limited. Given the dynamic nature of the chromosphere and the poorly understood magnetic linkage to the corona, it is unlikely that we will soon know the detailed processes leading to FIP fractionation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
In this paper a discussion is given of the present state of the theory of the heating of the solar corona by shock waves. Arguments are presented why the main contribution to the mechanical energy flux is of acoustic origin, while estimates for the amount of acoustic energy generated in the convection zone as well as the deviations from isotropy are given. During propagation through the atmosphere acoustic waves develop into shock waves after a distance of a few scale heights in the chromosphere. The heating of the outer layers by dissipation of shock waves is found to be sufficient to account for the observed radiative and corpuscular energy losses.Much emphasis is laid on the competitive role played by the four fundamental processes of energy transfer: mechanical heating, radiation, heat conduction and convection of energy in establishing the equilibrium structure of the corona. The atmosphere may be divided in several regions according to the predominance of one of the energy processes mentioned above.The physical properties of the chromosphere and the solar wind are discussed only where they are intimately connected with the problem of the heating of the corona.The most important aspects of the influence of a magnetic field on the structure and the heating of the corona in magnetically active regions are briefly mentioned. Special attention is paid to the strong channelling of heat flow along the field lines and its consequences for the structure and dynamics of the chromosphere-corona transition layer.  相似文献   

12.
The properties of different solar wind streams depend on the large scale structure of the coronal magnetic field. We present average values and distributions of bulk parameters (density, velocity, temperature, mass flux, momentum, and kinetic and thermal energy, ratio of thermal and magnetic pressure, as well as the helium abundance) as observed on board the Prognoz 7 satellite in different types of the solar wind streams. Maximum mass flux is recorded in the streams emanating from the coronal streamers while maximum thermal and kinetic energy fluxes are observed in the streams from the coronal holes. The momentum fluxes are equal in both types of streams. The maximum ratio of thermal and magnetic pressure is observed in heliospheric current sheet. The helium abundance in streams from coronal holes is higher than in streams from streamers, and its dependences on density and mass flux are different in different types of the streams. Also, the dynamics of -particle velocity and temperature relative to protons in streams from coronal holes and streamers is discussed.  相似文献   

13.
We present the observational results on chromospheric spicules obtained at the Sayan observatory 50 cm coronograph. To investigate the evolution of chromospheric spicules, we analysed spicule spectra of strong chromospheric lines measured simultaneously at three altitudes above the solar limb during 5–60 min with a time resolution of 10 to 20 s. The spatial resolution was better than 1, and the spectral resolution was 0.03Å in 6563Å. The appearance of a spicule at a given altitude is preceded by an sharp increase in line-of-sight velocity and/or in line half-width at a lower level. Generally, the evolution has a non-monotonous impulsive character. Changes of line-of-sight velocities and other parameters of the line profile can be represented as the superposition of slow, evolutionary changes and fluctuations with periods of about 80 to 120 s. The amplitude of line-of-sight velocity fluctuations is 2–3 km/sec and tends to increase with height. By studying the phase delays of the fluctuations at different heights, we found that the propagation velocity exceeds 300 km s–1, and that the disturbances do not necessarily propagate upwards.  相似文献   

14.
This paper presents a short summary of observations of coronal structures at microwaves using an instrument with high spatial resolution and good wavelength coverage. The comparison of the RATAN-600 data with optical observations of coronal loops in the green line and with the Very Large Array maps at 21 cm has shown that the loops represent only a small part of coronal matter, although their role may be of great importance in the physics of the solar corona. Prominence (filament) associated sources, especially peculiar ones, are also reviewed.  相似文献   

15.
Spectral emission lines created in the solar chromosphere — corona transition region show net red-shifts. It has been proposed that this may be the result of the return of spicular material. We simulate a spicule numerically using the rebound shock model and find that the resulting hydrodynamic evolution leads to a perceived up-flow in transition region spectral lines even though the average velocity in the line forming region is directed downward. The explanation for this apparent paradox is found in the correlation between density and velocity in the waves generated by the rebound shock spicule.  相似文献   

16.
Acceleration of the solar wind   总被引:2,自引:0,他引:2  
In this review, we discuss critically recent research on the acceleration of the solar wind, giving emphasis to high-speed solar wind streams emanating from solar coronal holes. We first explain why thermally driven wind models constrained by solar and interplanetary observations encounter substantial difficulties in explaining high speed streams. Then, through a general discussion of energy addition to the solar wind above the coronal base, we indicate a possible resolution of these difficulties. Finally, we consider the question of what role MHD waves might play in transporting energy through the solar atmosphere and depositing it in the solar wind, and we conclude by examining, in a simple way, the specific mechanism of solar wind acceleration by Alfvén waves and the related problem of accelerating massive stellar winds with Alfvén waves.Paper presented at the IX-th Lindau Workshop The Source Region of the Solar Wind.On leave from the Auroral Observatory, Institute of Mathematical and Physical Sciences, University of Tromsø, N-9001 Tromsø, Norway.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

17.
We present a simple technique describing how limits on the helium abundance, , the ratio of helium to proton number density, can be inferred from measurements of the electron density, temperature and their gradients below 1.5R s. As an illustration, we apply this technique to emission line intensities in the extreme ultraviolet, measured in polar coronal holes. The example indicates that can be significantly large in the inner corona. This technique could be applicable to the more extensive data to be obtained from coordinated ground and space-based observations during the Ulysses south polar passage and the Spartan flight, and subsequently during the SOHO mission. Limits on the helium abundance in the solar wind can thus be derived from its source region and compared to interplanetary values.  相似文献   

18.
Numerical simulations of energy depositions in the middle and upper solar chromosphere result in ejection of chromospheric material into the corona and heating of the chromospheric gas. These simulations may be capable of describing some of the features seen by the soft X-ray telescope on board theYohkoh satellite.  相似文献   

19.
The project for a Grazing Incidence Solar Telescope (GRIST) offers, for the first time, the combinations of high spatial (1) and spectral resolution in the extreme-ultraviolet wavelength range. The 3-dimensional electron density and temperature structure of the transition region and corona will be determined. The dynamics of the structures which make up the corona will be studied. GRIST can be expected to provide definitive improvement in the understanding of the coronal heating problem.Proceedings of the Conference Solar Physics from Space, held at the Swiss Federal Institute of Technology Zurich (ETHZ), 11–14 November 1980.  相似文献   

20.
We present a detailed analysis of the magnetic topology of flaring active region. TheH kernels are found to be located at the intersection of the separatrices with the chromosphere when the shear, deduced from the fibrils or/and transverse magnetic field direction, is taken into account. We show that the kernels are magnetically connected by field lines passing close to the separator. We confirm, for other flares, previous studies which show that photospheric current concentrations are located at the borders of flare ribbons. Moreover we found two photospheric current concentrations of opposite sign, linked in the corona by field lines which follow separatrices. These give evidence that magnetic energy is released by reconnection processes in solar flares.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号