首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 95 毫秒
1.
Earthquake (EQ) anomalies in the form of enhancement and depletion in ionospheric Total Electron Content (TEC) from Global Positioning System (GPS) may considerably alarm about short and long term precursors of the impending main shock. In this paper, TEC anomalies are investigated from permanent GPS ground-stations in Turkey associated to Mw ≥ 6.0 EQs occurred in 2011–2012. Temporal and spatial analyses of TEC at 2 h sampling have shown significant evidences about EQ induced ionospheric anomalies during 10–14 h of UT (Universal Time) within 5 days before Mw 6.0 Greece, and Mw 7.1, Turkish EQ. Spatial analyses have manifested arrival of TEC anomalies at UT = 10 h to epicenter of both EQs, which linger above epicenter during UT = 12–14 h and left seismogenic zone after UT = 14 h before every EQ during Kp < 3 and Dst = 0 nT. Meanwhile, a geomagnetic storm (Dst < -100 nT) induce perturbation two days after the Mw 7.1 Turkish EQ, showing no relation with epicenter during spatial analysis. It also shows that TEC can be useful to distinguish geomagnetic storm variations to successfully detect EQ precursors. These anomalies during quiet storm (Kp < 3; Dst = 0 nT) conditions may be effective to link the lithosphere and ionosphere in severe seismic zones to detect EQ precursors before future EQs. Interpretation of TEC anomalies and it enhancements over EQ epicenters during UT = 12–14 h for both EQs have shown that EQs anomalies only occurred in particular time. Whereas, geomagnetic storm effect occurred during whole abnormal day over the Earth.  相似文献   

2.
The dual-frequency satellite-based measurements from Global Positioning System (GPS) may provide feasible ways of studying and potentially detecting of earthquake (EQ) related anomalies in the ionosphere. In this paper, GPS based Total Electron Content (TEC) data are studied for three major M?>?7.0 EQs in Nepal and Iran-Iraq border during 2015–2017 by implementing statistical procedures on temporal and spatial scale. Previous studies presented different time interval of pre-seismic ionospheric anomalies, however, this study showed that EQs ionospheric precursors may occur within 10?days. Furthermore, the ionospheric anomalies on the suspected day occurred during UT?=?08:00–12:00?h before the main shock. The Global Ionospheric Map TEC (GIM-TEC) data retrieved over the epicenter of M7.8 (Nepal EQ) showed a significant increase of 6 TECU on April 24, 2015 (one day before the main shock), which is recorded by the ground GPS station data of Islamabad (station lies within the EQ preparation zone). Furthermore, the spatial GIM-TEC result imply significant anomalies over the epicenter during the time interval between UT?=?08:00–12:00?h (LT?=?13:00–17:00). For M7.3 (Nepal EQ), the TEC anomalies were detected on May 10, 2015 (2?days before the event) in the temporal data. The spatial TEC data imply the huge clouds over the epicenter at about UT?=?08:00–12:00?h on May 10, 2015, that may be associated with this EQ in the quiet geomagnetic storm conditions. Similarly, temporal and spatial TEC showed anomaly on November 3, 2017, during UT?=?08:00–12:00 (9?days before the Iran-Iraq border EQ) after implementing the statistical method on it. Conversely, there exists a short-term but low magnitude TEC anomaly synchronized with a geomagnetic storm on November 7–8, 2017 (4 to 5?days prior to M7.3 Iran-Iraq border EQ). The diurnal and hourly GIM-TEC and VTEC data also imply the execution of ionospheric anomalies within 10?days prior to all events. All these positive anomalies in TEC may be due to the existence of a huge energy from the epicenter during the EQ preparation period.  相似文献   

3.
Studying the relationship of total electron content (TEC) to solar or geomagnetic activities at different solar activity stages can provide a reference for ionospheric modeling and prediction. On the basis of solar activity indices, geomagnetic activity parameters, and ionospheric TEC data at different solar activity stages, this study analyzes the overall variation relationships of solar and geomagnetic activities with ionospheric TEC, the characteristics of the quasi-27-day periodic oscillations of the three variables at different stages, and the delayed TEC response of solar activity by conducting correlation analysis, Butterworth band-pass filtering, Fourier transform, and time lag analysis. The following results are obtained. (1) TEC exhibits a significant linear relationship with solar activity at different solar activity stages. The correlation coefficients |R| are arranged as follows: |R|EUV > |R|F10.7 > |R|sunspot number. No significant linear relationship exists between TEC and geomagnetic activity parameters (|R| < 0.35). (2) TEC, solar activity indices, and geomagnetic activity parameters have a period of 10.5 years. The maximum amplitudes of the Fourier spectrum for TEC and solar activity indices are nearly 27 days and those of geomagnetic activity parameters are nearly 27 and 13.5 days. (3) The deviations of the quasi-27-day significant periodic oscillation of TEC and solar activity indices are consistent. (4) No evident relationship exists between the quasi-27-day periodic oscillation of TEC and geomagnetic activity parameters. (5) The delay time of TEC for the 10.7 cm solar radio flux and extreme ultraviolet is always consistent, whereas that for sunspot number varies at each stage.  相似文献   

4.
Results of a statistical variation of total ion density observed in the vicinity of epicenters as well as around magnetically conjugated points of earthquakes are presented in this paper. Two data sets are used: the ion density measured by DEMETER during about 6.5?years and the list of strong earthquakes (MW?≥?4.8) occurring globally during this period (14,764 earthquakes in total). First of all, ionospheric perturbations with 23–120?s observation time corresponding to spatial scales of 160–840?km are automatically detected by a software (64,287 anomalies in total). Second, it is checked if a perturbation could be associated either with the epicenter of an earthquake or with its magnetically conjugated point (distance?<?1500?km and time?<?15?days before the earthquake). The index Kp?<?3 is also considered in order to reduce the effect of the geomagnetic activity on the ionosphere during this period. The results show that it is possible to detect variations of the ionospheric parameters above the epicenter areas as well as above their conjugated points. About one third of the earthquakes are detected with ionospheric influence on both sides of the Earth. There is a trend showing that the perturbation length increases as the magnitude of the detected EQs but it is more obvious for large magnitude. The probability that a perturbation appears is higher on the day of the earthquake and then gradually decreases when the time before the earthquake increases. The spatial distribution of perturbations shows that the probability of perturbations appearing southeast of the epicenter before an earthquake is a little bit higher and that there is an obvious trend because perturbations appear west of the conjugated point of an earthquake.  相似文献   

5.
On April 20, 2013, an earthquake of M7.0 occurred in Lushan, Sichuan province, China. This paper investigates the coseismic ionospheric anomalies using GPS (Global Positioning System) data from 23 reference stations in Sichuan province that are a part of the Crustal Movement Observation Network of China (CMONOC). The recorded results show that a clear ionospheric anomaly occurred within 15 min after the earthquake near the epicenter, and the occurrence time of the anomalies recorded by various stations is related to the distance from the epicenter. The maximum anomaly is 0.25 TECu, with a 2 min duration and the distance of the recording station to the epicenter is 83 km. Acoustic waves generated by the crustal vertical movement during the earthquake propagate up to the height of the ionosphere lead to the ionospheric anomaly, and the propagation speed of the acoustic wave is calculated as 0.72 ± 0.04 km/s based on the propagation time and propagation distance, consistent with the average speed of sound waves within a 0–450 km atmospheric height.  相似文献   

6.
A study of the critical frequency foF2 variations after the large earthquake (Ms = 8.1) which occurred on 29 September, 2009 in the region of Samoa Islands in the Pacific Ocean is carried out using data of the ionospheric station of Kwajalein. The epicenter of the earthquake was located at about 184 km southwest from Apia (the capital of West Samoa). It was found that wave-like perturbations of foF2 were observed for ∼3 h above the station (located approximately 3560 km northwest from the epicenter). The amplitude of the disturbance was as large as ∼20% of the average magnetic quiet day foF2 values. A comparison of the observed perturbations of foF2 with the ones detected at Stanford ionospheric station after the Alaska earthquake of 28 March 1964 (Ms = 8.4) showed a close similarity of the wave-like perturbations of foF2 in both cases.  相似文献   

7.
The earthquake (EQ) time coupling processes between equator-low-mid latitude ionosphere are complex due to inherent dynamical status of each latitudinal zone and qualified geomagnetic roles working in the system. In an attempt to identify such process, the paper presents temporal and latitudinal variations of ionization density (foF2) covering 45°N to 35°S, during a number of earthquake events (M?>?5.5). The approaches adopted for extraction of features by the earthquake induced preparatory processes are discussed in the paper through identification of parameters like the ‘EQ time modification in density gradient’ defined by δ?=?(foF2 max???foF2 min)∕τmm, where τmm – time span (in days) between EQ modified density maximum and minimum, and the Earthquake time Equatorial Anomaly, i.e. EEA, one of the most significant phenomenon which develops even during night time irrespective of epicenter position. Based on the observations, the paper presents the seismic time coupling dynamics through anomaly like manifestations between equator, low and mid latitude ionosphere bringing in the global Total Electron Content (TEC) features as supporting indices.  相似文献   

8.
Differences in the external part of the vertical geomagnetic component point to the existence of local inhomogeneities in the magnetosphere or the ionosphere. Usually used magnetic indices are not sufficient to express the state of ionosphere, the common used global Kp index derived in the three-hour interval does not indicate much more rapidly changes appearing in ionosphere. Magnetic index η reflects ionospheric disturbances when other indices show very quiet conditions. Data of ionospheric characteristics (foE, foEs, h’E, h’F2) during 28-day long quiet day conditions (Kp = 0–2) in 2004 were analyzed. The correlations between strong local disturbances in ionosphere during very quiet days and high values of magnetic index η were found. The most sensitive to magnetic influence – ionospheric E layer data (foE characteristic) – reaches median deviations up to (+0.8 MHz and −0.8 MHz) during very low magnetic activity (Kp = 0–1). The high peaks (2–2.7) of the magnetic index η correlate in time with large local median deviations of foE. Such local deviations can suggest local inhomogeneities (vertical drifts) in the ionosphere. The correlation in space is not trivial. The strong peak of η is situated between the positive and negative deviations of foE. Additional observation is connected with correlation in time of the high η value with the negative median deviations of h’F2 (in some cases up to −90 km). The analysis was based on one-minute data recorded at each of 20 European Magnetic Observatories working in the INTERMAGNET network and from 19 ionosondes for 2004. Ionospheric data are sparse in time and in space in opposite to the magnetic data. The map of the magnetic indices can suggest the behavior of ionospheric characteristics in the areas where we have no data.  相似文献   

9.
The bulk association between ionospheric storms and geomagnetic storms has been studied. Hemispheric features of seasonal variation of ionospheric storms in the mid-latitude were also investigated. 188 intense geomagnetic storms (Dst  100 nT) that occurred during solar cycles 22 and 23 were considered, of which 143 were observed to be identified with an ionospheric storm. Individual ionospheric storms were identified as maximum deviations of the F2 layer peak electron density from quiet time values. Only ionospheric storms that could clearly be associated with the peak of a geomagnetic storm were considered. Data from two mid-latitude ionosonde stations; one in the northern hemisphere (i.e. Moscow) and the other in the southern hemisphere (Grahamstown) were used to study ionospheric conditions at the time of the individual geomagnetic storms. Results show hemispheric and latitudinal differences in the intensity and nature of ionospheric storms association with different types of geomagnetic storms. These results are significant for our present understanding of the mechanisms which drive the changes in electron density during different types of ionospheric storms.  相似文献   

10.
The geomagnetic storm is a complex process of solar wind/magnetospheric origin. The variability of the ionospheric parameters increases substantially during geomagnetic storms initiated by solar disturbances. Various features of geomagnetic storm act at various altitudes in the ionosphere and neutral atmosphere. The paper deals with variability of the electron density of the ionospheric bottomside F region at every 10 km of altitude during intense geomagnetic storms with attention paid mainly to the distribution of the F1 region daytime ionisation. We have analysed all available electron density profiles from some European middle latitude stations (Chilton, Pruhonice, Ebro, Arenosillo, Athens) for 36 events that occurred in different seasons and under different levels of solar activity (1995–2003). Selected events consist of both depletion and increase of the F2 region electron density. For European higher middle and middle latitude the F1 region response to geomagnetic storm was found to be negative (decrease of electron density) independent on the storm effect on the F2 region. For lower middle latitude the F1 response is weaker and less regular. Results of the analysis also show that the maximum of the storm effect may sometimes occur below the height of the maximum of electron density (NmF2).  相似文献   

11.
Plasma transport is very important for understanding the space-time variations of the ionosphere. Therefore, following a resolution of URSI Subcommission G4, an effort is made to create a computer code describing the main results of investigations the ionospheric drift which were not considered in IRI-1979.

The experimental data from 23 stations in the Northern Hemisphere were obtained between 1957 and 1970. The worldwide coverage in geographic latitude is 7°N to 71°N (7.5° to 64.1° geomagnetic) and O° to 131°E geographic longitude.

We have developed appropriate procedure which allow us to infer from these data the main parameters of the global ionospheric motions at E- and F-region levels.

An algorithm for computing the zonal and meridional drift components VX, VY can be found in IRI-1990.

The last version of the computer programm called DRIFT which does the test calculation of Ionospheric Drifts Global Model whith printing the tables at the Epson printer is written in Turbo ascal for the IBM PC AT 286/287 compatible computers. Program code (execute module) is about 25 Kbyte. Data files are about 10 Kbyte.

E- and F-region horizontal ionospheric irregularities drift data, worldwide obtained from 1957 to 1970 by D1 and D3 methods, are statistically analysed and a computer code for the average velocity variations in latitude and local time for some solar activity levels is constructed. The PC program DRIFT allows to determine zonal and meridional drift velocities of ionospheric irregularities at the lower (90 < h < = 140 km) and upper (h > 140 km) ionosphere.

The main block of the program DRIFT is the procedure DRIRR for calculating VX and VY for a period (P), geomagnetic (geographic) latitude (FI) and local time (LT) to be specified.

The example of the program DRIFT calculation for F-region (REG=2) and for the whole period of observations (P=1) is in Table. VX > 0 to east, VY > 0 to north. FI is geomagnetic latitude.  相似文献   


12.
The response of the ionospheric F-region in the equatorial and low latitude regions in the Brazilian sector during the super geomagnetic storm on 06–07 April 2000 has been studied in the present investigation. The geomagnetic storm reached a minimum Dst of −288 nT at 0100 UT on 07 April. In this paper, we present vertical total electron content (VTEC) and phase fluctuations (in TECU/min) from GPS observations obtained at Imperatriz (5.5°S, 47.5°W; IMPZ), Brasília (15.9°S, 47.9°W; BRAZ), Presidente Prudente (22.12°S, 51.4°W; UEPP), and Porto Alegre (30.1°S, 51.1°W; POAL) during the period 05–08 April. Also, several GPS-based TEC maps are presented from the global GPS network, showing widespread and drastic TEC changes during the different phases of the geomagnetic storm. In addition, ion density measurements on-board the satellite Defense Meteorological Satellite Program (DMSP) F15 orbiting at an altitude of 840 km and the first Republic of China satellite (ROCSAT-1) orbiting at an altitude of 600 km are presented. The observations indicate that one of the orbits of the DMSP satellite is fairly close to the 4 GPS stations and both the DMSP F15 ion-density plots and the phase fluctuations from GPS observations show no ionospheric irregularities in the Brazilian sector before 2358 UT on the night of 06–07 April 2000. During the fast decrease of Dst on 06 April, there is a prompt penetration of electric field of magnetospheric origin resulting in decrease of VTEC at IMPZ, an equatorial station and large increase in VTEC at POAL, a low latitude station. This resulted in strong phase fluctuations on the night of 06–07 April, up to POAL. During the daytime on 07 April during the recovery phase, the VTEC observations show positive ionospheric storm at all the GPS stations, from IMPZ to POAL, and the effect increasing from IMPZ to POAL. This is possibly linked to the equatorward directed meridional wind. During the daytime on 08 April (the recovery phase continues), the VTEC observations show very small negative ionospheric storm at IMPZ but the positive ionospheric storm effect is observed from BRAZ to POAL possibly linked to enhancement of the equatorial ionospheric anomaly.  相似文献   

13.
Earthquake prediction stimulates the searches for a correlation between seismic activity and ionospheric anomalies. Contrary to common focuses on strong earthquakes, we report the ionospheric disturbances, 2 days before a moderate Ms = 4.7 Chongqing earthquake (29.4°N, 105.5°E, depth = 7.0 km, occurred at 21:21 LT, 10 September, 2010) with the data of ground-based ionosondes and IGS receivers. The data covering the period under the quiet geomagnetic conditions and a geomagnetic storm was analyzed with upper and lower bounds. It is found that there were significant enhancements of foF2 and total electron content (TEC) on the afternoon of 8 September, 2010, with a limited area close to the epicentre, which was different from the feature of ionospheric perturbations triggered by the geomagnetic storm on 15 September. Taking into account the heliogeomagnetical condition, we conclude that the observed ionospheric enhancements were very likely associated with the forthcoming moderate Chongqing earthquake, which implies that the relationship between the amplitudes of ionospheric disturbances and earthquakes is very complicated.  相似文献   

14.
This paper uses principal component analysis (PCA) to determine the spatial pattern of total electron content (TEC) anomalies in the ionosphere post the China’s Wenchuan Earthquake of 12 May, 2008 (UTC) (Mw = 7.9). PCA and image processing are applied to the global ionospheric map (GIM) with transforms conducted for the time period 08:00–10:00 UT on 12 May 2008. Results show that at a height of approximately 200 km the anomaly is widespread and less intense; however, it becomes more localized with height reaching maximum intensity and localization at an altitude of 300 km. The spatial distribution is remarkably similar to that reported for a TEC anomaly previously identified as a precursor anomaly on May 9, 2008 for the same time period. Potential causes of the results are discussed with emphasis given to vertical acoustic gravity waves based on the spatial pattern identified.  相似文献   

15.
The present paper proposes to discuss the ionospheric absorption, assuming a quasi-flat layered ionospheric medium, with small horizontal gradients. A recent complex eikonal model (Settimi et al., 2013b) is applied, useful to calculate the absorption due to the ionospheric D-layer, which can be approximately characterized by a linearized analytical profile of complex refractive index, covering a short range of heights between h1 = 50 km and h2 = 90 km. Moreover, Settimi et al. (2013c) have already compared the complex eikonal model for the D-layer with the analytical Chapman’s profile of ionospheric electron density; the corresponding absorption coefficient is more accurate than Rawer’s theory (1976) in the range of middle critical frequencies. Finally, in this paper, the simple complex eikonal equations, in quasi-longitudinal (QL) approximation, for calculating the non-deviative absorption coefficient due to the propagation across the D-layer are encoded into a so called COMPLEIK (COMPLex EIKonal) subroutine of the IONORT (IONOspheric Ray-Tracing) program ( Azzarone et al., 2012). The IONORT program, which simulates the three-dimensional (3-D) ray-tracing for high frequencies (HF) waves in the ionosphere, runs on the assimilative ISP (IRI-SIRMUP-P) discrete model over the Mediterranean area ( Pezzopane et al., 2011). As main outcome of the paper, the simple COMPLEIK algorithm is compared to the more elaborate semi-empirical ICEPAC formula (Stewart, undated), which refers to various phenomenological parameters such as the critical frequency of E-layer. COMPLEIK is reliable just like the ICEPAC, with the advantage of being implemented more directly. Indeed, the complex eikonal model depends just on some parameters of the electron density profile, which are numerically calculable, such as the maximum height.  相似文献   

16.
Westward ionospheric convective flows around midnight are frequently observed at mid-latitudes. They can be generated by so-called disturbance dynamo mechanisms working mainly in the mid-latitudes. To understand the influence of disturbance dynamo effects in the mid-latitudes, we studied the latitudinal distribution of westward flows in association with several kinds of geomagnetic disturbances using the SuperDARN Hokkaido radar. This radar creates high temporal resolution (1 s to 2 min), two-dimensional observations measuring the line-of-sight velocities of ionospheric plasma irregularities, which can be regarded as line-of-sight velocities of ionospheric convection in the mid-latitude region from 40° to 50°. This region could not be monitored using preexisting SuperDARN radars. In this study, we used ionospheric echo data obtained by the SuperDARN Hokkaido radar over 5 years (December 2006 to November 2011). We identified westward flows around midnight at about 40° to 55° geomagnetic latitude. Additionally, the data showed that the westward flow around midnight intensified under high geomagnetic activity (high Kp). This suggests that the disturbance dynamo could affect the mid-latitude ionospheric convection. We performed Superposed Epoch Analysis (SEA) to study the influences from the geomagnetic disturbances on mid-latitude ionospheric convection. We found no obvious influence during major storms (minimum Dst below −60 nT). SEA was also used to study the temporal and latitudinal dependence on the influences from substorms. From analysis of 36 events of AL-defined substorms, we saw that the influence of substorms lasted from 5 to 20 h after the onset between 44° and 53° geomagnetic latitude. The westward flow at mid-latitude grew to a maximum at 12 h after the geomagnetic substorm onset. This is consistent with the results of past numerical simulation studies of the disturbance dynamo effects.  相似文献   

17.
A precise determination of ionospheric total electron content (TEC) anomaly variations that are likely associated with large earthquakes as observed by global positioning system (GPS) requires the elimination of the ionospheric effect from irregular solar electromagnetic radiation. In particular, revealing the seismo-ionospheric anomalies when earthquakes occurred during periods of high solar activity is of utmost importance. To overcome this constraint, a multiresolution time series processing technique based on wavelet transform applicable to global ionosphere map (GIM) TEC data was used to remove the nonlinear effect from solar radiation for the earthquake that struck Tohoku, Japan, on 11 March, 2011. As a result, it was found that the extracted TEC have a good correlation with the measured solar extreme ultraviolet flux in 26–34 nm (EUV26–34) and the 10.7 cm solar radio flux (F10.7). After removing the influence of solar radiation origin in GIM TEC, the analysis results show that the TEC around the forthcoming epicenter and its conjugate were significantly enhanced in the afternoon period of 8 March 2011, 3 days before the earthquake. The spatial distributions of the TEC anomalous and extreme enhancements indicate that the earthquake preparation process had brought with a TEC anomaly area of size approximately 1650 and 5700 km in the latitudinal and longitudinal directions, respectively.  相似文献   

18.
The paper presents an empirical model of the total electron content (TEC) response to the geomagnetic activity described by the Kp-index. The model is built on the basis of TEC measurements covering the region of North America (50°W–150°W, 10°N–60°N) for the period of time between October 2004 and December 2009. By using a 2D (latitude-time) cross-correlation analysis it is found that the ionospheric response to the geomagnetic activity over the considered geographic region and at low solar activity revealed both positive and negative phases of response. The both phases of the ionospheric response have different duration and time delay with respect to the geomagnetic storm. It was found that these two parameters of the ionospheric response depend on the season and geographical latitude. The presence of two phases, positive and negative, of the ionospheric response imposed the implementation of two different time delay constants in order to properly describe the two different delayed reactions. The seasonal dependence of the TEC response to geomagnetic storms is characterized by predominantly positive response in winter with a short (usually ∼5–6 h) time delay as well as mainly negative response in summer with a long (larger than 15 h) time delay. While the TEC response in March and October is more close to the winter one the response in April and September is similar to the summer one.  相似文献   

19.
Moderate geomagnetic storms occurred during January 22–25, 2012 period. The geomagnetic storms are characterized by different indices and parameters. The SYM-H value on January 22 increased abruptly to 67 nT at sudden storm commencement (SSC), followed by a sharp decrease to −87 nT. A second SSC on January 24 followed by a shock on January 25 was also observed. These SSCs before the main storms and the short recovery periods imply the geomagnetic storms are CME  -driven. The sudden jump of solar wind dynamic pressure and IMF BzBz are also consistent with occurrence of CMEs. This is also reflected in the change in total electron content (TEC) during the storm relative to quiet days globally. The response of the ionospheric to geomagnetic storms can also be detected from wave components that account for the majority of TEC variance during the period. The dominant coherent modes of TEC variability are diurnal and semidiurnal signals which account upto 83% and 30% of the total TEC variance over fairly exclusive ionospheric regions respectively. Comparison of TEC anomalies attributed to diurnal (DW1) and semidiurnal (SW2) tides, as well as stationary planetary waves (SPW1) at 12 UTC shows enhancement in the positive anomalies following the storm. Moreover, the impact of the geomagnetic storms are distinctly marked in the daily time series of amplitudes of DW1, SW2 and SPW1. The abrupt changes in amplitudes of DW1 (5 TECU) and SW2 (2 TECU) are observed within 20°S–20°N latitude band and along 20°N respectively while that of SPW1 is about 3 TECU. Coherent oscillation with a period of 2.4 days between interplanetary magnetic field and TEC was detected during the storm. This oscillation is also detected in the amplitudes of DW1 over EIA regions in both hemispheres. Eventhough upward coupling of quasi two day wave (QTDWs) of the same periodicity, known to have caused such oscillation, are detected in both ionosphere and upper stratosphere, this one can likely be attributed to the geomagnetic storm as it happens after the storm commencement. Moreover, further analysis has indicated that QTDWs in the ionosphere are strengthened as a result of coherent oscillation of interplanetary magnetic field with the same frequency as QTDWs. On the otherhand, occurrences of minor SSW and geomagnetic storms in quick succession complicated clear demarcation of attribution of the respective events to variability of QTDWs amplitudes over upper stratosphere.  相似文献   

20.
The present paper reports coordinated ionospheric irregularity measurements at optical as well as GPS wavelengths. Optical measurements were obtained from Tiny Ionospheric Photometer (TIP) sensors installed onboard the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellites. GPS radio signals were obtained from a dual frequency GPS receiver operational at Calcutta (22.58°N, 88.38°E geographic; geomagnetic dip: 32.96°; 13.00°N, 161.63°E geomagnetic) under the SCIntillation Network Decision Aid (SCINDA) program. Calcutta is located near the northern crest of Equatorial Ionization Anomaly (EIA) in the Indian longitude sector. The observations were conducted during the unusually low and prolonged solar minima period of 2008–2010. During this period, four cases of post-sunset GPS scintillation were observed from Calcutta. Among those cases, simultaneous fluctuations in GPS Carrier-to-Noise ratios (C/No) and measured radiances from TIP over a common ionospheric volume were observed only on February 2, 2008 and September 25, 2008. Fluctuations observed in measured radiances (maximum 0.95 Rayleigh) from TIP due to ionospheric irregularities were found to correspond well with C/N0 fluctuations on the GPS links observed from Calcutta, such effects being noted even during late evening hours of 21:00–22:00 LT from locations around 40° magnetic dip. These measurements indicate the existence of electron density irregularities of scale sizes varying over several decades from 135.6 nm to 300–400 m well beyond the northern crest of the EIA in the Indian longitude sector during late evening hours even in the unusually low solar activity conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号