首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
运用文献计量学的统计方法,对2001-2004年出版的<中国民航学院学报>载文、作者及引文情况进行统计和分析,阐述该刊的载文、作者及引文特点.  相似文献   

2.
跨音速离心压气机的现状和发展   总被引:1,自引:1,他引:0  
叙述了国内外跨音离心压气机的发展概况以及内部流场的计算方法和气动设计方法的现状和发展, 提出了作者自己的看法。   相似文献   

3.
编辑工作互动性较强,是一项系统性、创造性的工作。期刊编辑在日常工作中,一是要强化服务作者的意识;二是需要具备良好的沟通能力。通过对科技期刊作者群的分析,提出了期刊编辑强化服务作者意识的具体路径和方法,对期刊编辑如何实现与作者的顺畅沟通有一定的启发借鉴作用;对提高期刊编校质量,实现期刊可持续发展亦具有一定的现实意义。  相似文献   

4.
本文给出了以点位观测为主的单站初始轨道计算方法。为了适用于任意偏心率卫星,作者对初值选择进行了有效的改进;为了提高初轨计算的定轨精度,进一步扩大收敛范围,作者针对方位角A、高度h、斜距ρ和斜距变化率ρ具有不同精度的实际,提出了加权处理的具体措施。实际计算表明,方法是可靠的。  相似文献   

5.
本文通过涡桨六发动机一级涡轮工作叶片的静强度计算与分析,指出已经设计定型的叶型是不符合理论要求的;因此作者认为,有必要对所有测绘仿制的发动机涡轮工作叶片重新验算。同时,作者还给出了相应的计算条件和方法,从而对整个验算程序提供了一个途径。  相似文献   

6.
本文作者通过对质量成本评价指标体系及其效果评价的初步研究,指出了建立定性、定量的质量考核指标是寻求降低质量总成本的依据;介绍了进行质量成本效果评价分析的方法。  相似文献   

7.
本文论述了航空电子产品环境应力筛选条件与真实环境条件(工作条件)的关系;确定筛选条件、筛选时间的原则和方法;影响筛选效率的主要因素。作者还建议对筛选条件进行剪裁,以提高筛选效率。  相似文献   

8.
圆柱单孔高频压力探针测量高亚音速二维周期流场的方法   总被引:2,自引:2,他引:0  
李雨春  蒋浩康 《航空动力学报》1992,7(2):164-166,196
本文详细介绍了作者发展的圆柱单孔高频压力探针测量高亚音速二维周期性流场的方法。该方法简化了压缩性影响的修正,测量时置探针于九个方位角。它已被成功地应用于单、多级高速压气机转子出口流场的测量   相似文献   

9.
本文介绍了机务信息规范化的背景和意义。提出了用自然语言理解的方法进行机务信息的化处理。介绍了作者所开发的机务信息化系统的组成与特点,简要介绍了作者所进行的研究内容与采用的方法。  相似文献   

10.
对于一篇科技论文,参考文献的著录是不可缺少的。著录参考文献时应贯彻下列原则:1.只著录最必要最新的文献;2.只著录公开发表的文献;3.采用标准化的著录格式。投我院学报的稿件,文后参考文献的著录方法具体应该参照我国国家标准 GB 7714《文后参考文献著录规则》以及《<海军航空工程学院学报>征稿简则》的相关内容。下面对几个常见问题加以说明。1.参考文献的作者不超过三个时,应全部著录;作者超过三个时。可只著录前三个作者,其后加“等”字或者其它与之  相似文献   

11.
环形燃烧室两相燃烧数值研究   总被引:2,自引:0,他引:2  
赵坚行 《航空学报》1992,13(12):599-605
根据环形燃烧室设计需要,运用计算机模拟技术研究模型环形燃烧室三维有旋液雾燃烧流场,研究两相流动与混合,液雾蒸发对燃烧过程的影响。两相流动模型采用颗粒群轨道模型,气相紊流输运方程求解采用双方程k-ε模型和EBU-Arrhenius紊流燃烧模型,热辐射采用热通量法模型,本文提供计算方法可以用来研究不同性能参数对环形燃烧室两相燃烧特性影响。  相似文献   

12.
利用基于非结构化网格有限体积法对三维有壁面射流的燃烧室内两相流动和燃烧进行了数值研究.对气相流动在Euler坐标系下求解,而对液滴相则利用Lagrange方法进行追踪求解.计算区域采用四面体网格进行划分,气相流场用SIMPLEC计算方法,对液滴相采用了欧拉隐式方法.考虑了液滴相与气相的完全双向耦合作用,分别采用了Spalding液滴蒸发模型和涡破碎(EBU)燃烧模型,数值计算结果与文献中实验数据吻合较好.   相似文献   

13.
大涡模拟模型燃烧室燃烧性能计算   总被引:3,自引:2,他引:1  
对带双级扩压器的模型燃烧室气液两相瞬态喷雾燃烧过程,在三维贴体坐标系下采用欧拉-拉格朗日两相大涡模拟方法进行数值研究,同时采用多维经验分析法预估燃烧性能.采用 k 方程亚网格尺度模型模拟亚网格湍流黏性;亚网格EBU(eddy-break-up)燃烧模型预估化学反应速率;多维经验分析法计算燃烧性能;并在非交错网格体系下气相采用SIMPLE(semi-implicit method for pressure-linked equations)算法对控制方程进行求解,液相采用随机离散模型,两相之间的耦合采用PSIC(particle-source-in-cell)算法.通过大涡模拟瞬态及时均计算结果表明:与粒子图像测速仪(PIV)测量的瞬态速度场、出口温度分布试验数据吻合,表明在三维贴体坐标系下采用欧拉-拉格朗日两相大涡模拟方法,数值模拟模型燃烧室两相喷雾燃烧流场,所采用的亚网格模型可以用于燃烧室气液两相喷雾燃烧流场的大涡模拟;燃烧性能计算结果与试验测量结果基本一致,说明所采用多维经验分析法可以用来数值模拟航空发动机燃烧室燃烧性能的计算,特别是污染物的预估,为设计低污染高性能航空发动机燃烧室提供有用的设计依据.   相似文献   

14.
采用欧拉-拉格朗日方法对燃气-蒸汽发射动力装置内高温高压超音速燃气中的横向喷雾的气液两相流进行了数值模拟研究,气相采用RK-AUSM+格式求解N-S方程,液相应用颗粒轨道模型,两相之间的耦合通过在气相各守恒方程中添加源项来实现。针对不同的喷水孔径、喷水压差以及水汽质量比进行了数值模拟计算,分析了各种条件下的液滴蒸发情况以及对气相流场和能量输出的影响,为燃气-蒸汽发射动力装置的设计优化和能量调节技术提供了理论依据  相似文献   

15.
回流燃烧室燃烧过程的三维数值模拟   总被引:9,自引:3,他引:6  
在三维任意曲线坐标系下数值模拟回流燃烧室火焰筒内两相燃烧过程,采用RNG k-ε模型模拟紊流粘性,EBU-Arrhenius模型模拟燃烧反应速率、离散坐标模型以及六通量模型考虑辐射传热,液相采用颗粒轨道模型,气相采用SIMPLE算法求解,并用PSIC算法考虑气液两相之间的相互作用的影响,计算得到燃烧室内速度、温度等各气流参数分布.通过将计算与实验结果对比表明,计算方法可靠,离散坐标模型优于六通量辐射模型,更适用于模拟火焰筒内两相燃烧流场.   相似文献   

16.
为研究超声速气流中简化液滴的汽化过程问题,本文分析了两相流计算中已有的两相传热模型,并对简化液滴绕流开展数值计算.在来流Ma≤0.6的条件下,数值计算得到的简化液滴-气流之间的传热速率与已有模型得到的结果相一致,而在来流Ma≥0.9的条件下,数值计算得到的简化液滴-气流之间的传热速率与已有模型得到的结果存在很大偏差.由此建立了考虑简化液滴与气流相对超声速相互作用的两相传热模型.进一步,采用Charles B.Henderson阻力系数关系式与新建立的传热模型,对不同直径简化液滴的运动与汽化开展工程计算.在来流2.7Ma的二维平板超声速流场中选取一个截面,作为气相流场,结果显示,(1)简化液滴与主气流存在相对超声速作用.当简化液滴直径dk≤0.12mm时,作用区域约为0.1m~0.4m,当dk>0.12mm时,作用区域明显增大,(2)简化液滴的穿透尺度不超过0.011m/m(深度/长度),时间尺度约为0.28ms~3ms,(3)简化液滴完成汽化的空间尺度约为0.1m(dk>=0.03mm)、0.45m(dk>=0.05mm)与1.24m(dk>=0.075mm),而当dk>0.09mm时,简化液滴完成汽化的空间尺度则大于1.9m.使用考虑简化液滴与气流相对超声速相互作用的两相传热模型与使用传统的传热模型对简化液滴的运动轨迹没有影响,而对简化液滴的汽化过程有较大影响.  相似文献   

17.
随着流动马赫数和温度的变化,热力学非平衡对流动的影响也在变化。为研究热力学非平衡对不同飞行马赫数条件下的超燃冲压发动机冷态流动的影响,对三个经典的超燃冲压发动机模型,包括JAXA Ma12-02超燃冲压发动机,DLR超燃冲压发动机,以及Hyshot II超燃冲压发动机进行数值模拟。针对每个超燃冲压发动机,分别采用三种热力学模型进行模拟,包括量热完全气体模型(对应冻结流动),单温度模型(对应热力学平衡流动)以及双温度模型(对应热力学非平衡流动)。计算结果表明,热力学模型对超燃冲压发动机内流波系结构的位置有一定影响:从整体上来说,双温度模型计算所得波系位置比量热完全气体模型计算结果靠后,比单温度模型计算结果靠前;不同热力学模型计算所得波系位置在发动机前段相对较为接近,而随着向下游发展,波系位置的差别逐渐增大,这是上游每一道波系位置的差别逐渐累积的结果;在发动机前段,双温度模型计算所得波系位置更接近于量热完全气体模型计算结果。通过分析不同热力学模型计算所得激波角可以对此进行解释。而就本文涉及的三个小尺寸超燃冲压发动机而言,热力学模型对气动力和力矩的影响相对较小。不同热力学模型计算所得气动力和力矩的差别主要来源于计算所得激波串位置的差别。  相似文献   

18.
王运良  徐忠  苗永淼 《航空动力学报》1994,9(3):307-309,336
以流体k-E双方程模型为基础, 提出了一种包括颗粒湍动能输运方程和耗散率方程的k-E-kp-Ep两相湍流模型。并对两个垂直上升管道内气固两相湍流进行了数值计算, 计算结果和已有实验结果吻合得很好。   相似文献   

19.
To predict the effect of the liquid rocket engine combustion chamber conditions on the impingement spray, the conventional uncoupled spray model for impinging injectors is extended by considering the coupling of the jet impingement process and the ambient gas field. The new coupled model consists of the plain-orifice sub-model, the jet-jet impingement sub-model and the droplet collision sub-model. The parameters of the child droplet are determined with the jet-jet impingement sub-model using correlations about the liquid jet parameters and the chamber conditions.The overall model is benchmarked under various impingement angles, jet momentum and offcenter ratios. Agreement with the published experimental data validates the ability of the model to predict the key spray characteristics, such as the mass flux and mixture ratio distributions in quiescent air. Besides, impinging sprays under changing ambient pressure and non-uniform gas flow are investigated to explore the effect of liquid rocket engine chamber conditions. First, a transient impingement spray during engine start-up phase is simulated with prescribed pressure profile. The minimum average droplet diameter is achieved when the orifices work in cavitation state, and is about 30% smaller than the steady single phase state. Second, the effect of non-uniform gas flow produces off-center impingement and the rotated spray fan by 38°. The proposed model suggests more reasonable impingement spray characteristics than the uncoupled one and can be used as the first step in the complex simulation of coupling impingement spray and combustion in liquid rocket engines.  相似文献   

20.
本文建立了气-固两相流的多连续介质模型,并分别对突扩回流与大速差射流回流这两种与实际工程应用密切相关的复杂流动条件下的受限湍流气一固两相流动进行了数值模拟。单相湍流回流流场的模拟结果与实验符合良好。两相流动的模拟结果表明,与突扩回流相比,大速差射流回流更有利于实现较高的颗粒浓度与气相回流区及低速尾流区的匹配,增加两相滑移速度,延长颗粒停留时间及强化两相间的混合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号