首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
We expect a variety of dynamic phenomena in the quiescent non-flaring corona. Plasma flows, such as siphon flows or convective flows of chromospheric material evaporating into the corona, are expected whenever a pressure differences is established either between the footpoints or between the coronal and chromospheric segments of a coronal loop. Such flows can induce phenomena of spatial and temporal brightness variability of the corona. In particular, evaporation induces a net mass input into the corona and consequently coronal density enhancements. Flows are also expected in the regions where energy is released during magnetic reconnection. From the observational point of view the dynamics of the solar atmosphere has been investigated in great detail mostly in the lower transition region with the HRTS, and during flares with theSolar Maximum Mission andYohkoh. The high spectral, temporal and spatial resolution of theSOHO ultraviolet spectrometers should enable us in the near future to fill the gap providing a continuous coverage from the chromosphere to the corona, in the 104–106 K domain, and therefore to best study the dynamics throughout the solar atmosphere.  相似文献   

2.
The French mobile station for recording geophysical data has been put in operation at Husafell, Iceland (64°5N, 20°8W) between the 10th of July and the 22nd of September, 1977. This place was more or less conjugated with GEOS when this satellite was near its apogee. The equipments installed in the station for recording VLF and ULF phenomena have characteristics (band-pass, sampling rates) which are identical to the similar equipments installed onboard GEOS. Intercomparison between signals recorded at both points are therefore easy. We present here the results which were obtained in the VLF range.In many occasions, VLF emissions (mainly hiss) do present identical variations in amplitude, with a very abrupt (<1 mn) and very large (>20 dB) decrease in amplitude. Because of their simultaneity at both points, such abrupt variations cannot be interpreted in terms of a sudden ionospheric absorption (associated with an enhanced particle precipitation) nor in terms of a sudden crossing of detached plasma regions. In some cases, these abrupt changes in the VLF intensity are associated with the appearance and disappearance of strong ULF emissions, in the Pc-1 frequency range. Some examples of associated onboard measurements of high energy electron fluxes or cold plasma density (when available) are given, which may help understanding these VLF conjugated relationships.  相似文献   

3.
Freja *, a joint Swedish and German scientific satellite launched on october 6 1992, is designed to give high temporal/spatial resolution measurements of auroral plasma characteristics. A high telemetry rate (520 kbits s–1) and 15 Mbyte distributed on board memories that give on the average 2 Mbits s–1 for one minute enablesFreja to resolve meso and micro scale phenomena in the 100 m range for particles and 1–10 m range for electric and magnetic fields. The on-board UV imager resolve auroral structures of kilometer size with a time resolution of one image per 6 s. Novel plasma instruments giveFreja the capability to increase the spatial/temporal resolution orders of magnitudes above that achieved on satellites before. The scientific objective ofFreja is to study the interaction between the hot magnetospheric plasma with the topside atmosphere/ionosphere. This interaction leads to a strong energization of magnetospheric and ionospheric plasma and an associated erosion, and loss, of matter from the Terrestrial exosphere.Freja orbits with an altitude of 600–1750 km, thus covering the lower part of the auroral acceleration region. This altitude range hosts processes that heat and energize the ionospheric plasma above the auroral zone, leading to the escape of ionospheric plasma and the formation of large density cavities.  相似文献   

4.
Wave-particle effects are implicit in most models of radial diffusion and energization of Van Allen belt particles; they were explicitly used in the wave turbulence model for trapped particle precipitation and trapped flux limitations by Kennel and Petschek, Cornwall and by many others. Liemohn used wave-particle interactions to work out a theory of path-integrated whistler amplification process to explain the lack of large per-hop attenuation of multiple-hop LF whistlers.Others have now used wave-particle interactions to construct theories of ELF and VLF chorus. In the present paper we shall review the observations and some of the pertinent theoretical interpretations of wave-particle effects as they relate to substorm and storm-time phenomena. If substorms develop as a result of magnetic merging, then it seems clear that wave-particle interactions in the dissipative or so-called diffusion region of the reconnection zone may be of great importance. The plasma sheet thinning and flow towards the Earth lead inevitably to the development of particle distribution functions that contain free energy in a pitch-angle anisotropy. Such free energy can be released via plasma wave instabilities. The subsequent wave-particle interactions can result in both strong and weak diffusion of particles into loss cones with consequent precipitation fluxes into the auroral zone. Ring current proton spectra also should be unstable against various plasma instabilities with consequent ring current decay and precipitations. Wave-particle interactions must play some important roles in auroral arcs, electrojets and other phenomena related to substorms. These aspects of wave-Paticle interaction will be covered  相似文献   

5.
Recent measurements of the extraterrestrial UV- and EUV-radiation, and the various theoretical approaches used in explaining the measured features of these radiations are reviewed. Whereas the structures and intensities of extraterrestrial EUV-radiation are essentially undetermined up to now, the observations of the extraterrestrial UV-sky give a clear indication of the existence of neutral interstellar hydrogen within the solar system.The effects of solar radiation pressure, and of temporal variations and spatial asymmetries in the solar radiations, on the structure of the extraterrestrial L sky are investigated in detail, and the various attempts to derive interstellar parameters from the interpretation of the measured L intensities are discussed.From these discussions the local interstellar medium is established as a tenuous hot intercloud H i-medium. The amount of its relative motion against the solar system cannot be reliably fixed. Further activities concerning the measurement of extraterrestrial UV- and EUV-radiation features are suggested that may be highly valuable in clarifying the outstanding problems.  相似文献   

6.
Our knowledge of the interplanetary medium is outlined and its frictionless interaction with the geomagnetic cavity, first discussed by Chapman and Ferraro, is described. An important feature of this interaction is the interplanetary field which is compressed and may possibly lead to the formation of a shock wave.The possibility of frictional interaction between the solar wind and the cavity is discussed; an effect which appears to cause friction is the instability of interpenetrating ion-electron streams. This effect will also cause strong heating and trapping of ions and the generation of electromagnetic waves.The theory of propagation of geomagnetic disturbances in the magnetosphere and ionosphere is reviewed, first in general terms and than for some of the various components of a geomagnetic storm.Sea-level disturbances are divided into stormtime (Dst) and other (DS) components and also into different phases and the experimental data is reviewed. Theories of Dst, including the ringcurrent theory and magnetic tail theory are discussed and compared. Attempts to explain the complex DS field comprise the magnetospheric dynamo theory and the asymmetrical ring-current theory; these are compared in the light of experimental evidence.Motions of plasma and field lines in the magnetosphere are discussed in general terms: there are motions which deform the field and there are interchange motions. The former are opposed by Earth currents; the latter are not. The two types of motion are coupled through ionospheric Hall conductivity. Theories of the DS field in terms of the two types of motion are described; in particular motions caused by frictional interaction with the solar wind are discussed. These motions cause a helical twist in the field lines which propagates into the polar ionosphere as a hydromagnetic wave. In the ionosphere the motions of the field lines drive currents (moving-field dynamo) which cause the DS field.Drifts of neutral ionization in the lower ionosphere lead to localized accumulations which play a vital part in storm and auroral theory: they cause polarization fields which change the DS current system; they react on the magnetospheric motions to cause particle acceleration and precipitation.Auroral morphology and theories are briefly reviewed; the solar wind friction theory, although far from complete may provide a start. Further development should take the form of determining ionospheric drifts, polarization electric fields and consequent magnetospheric effects.A brief discussion is given of some associated effects: growth and decay of belts of geomagnetically trapped corpuscules; increase in ionospheric absorption of radio waves and lower-level X-ray production, ionospheric storm and high-latitude irregularities, micropulsations, VLF and ELF radio emissions from the magnetosphere, atmospheric heating and wave generation.  相似文献   

7.
Following earlier suggestions of Edmond Halley and Anders Celsius for the magnetic behavior of auroral phenomena, Kristian Birkeland discovered in his polar expeditions of 1902–03 that large-scale electric currents were associated with the aurora. He was also the first to suggest that these currents originated far from earth and that they flowed into the upper polar atmosphere and out of it along magnetic field lines; the existence of such field-aligned currents was widely disputed until satellite and rocket-borne instruments confirmed their permanent existence. The importance of these Birkeland currents to the coupling between the magnetosphere and the polar ionosphere is emphasized by their intensity, which ranges between 106 and 107 amperes, and by the energy which they dissipate in the upper atmosphere, which can exceed by a considerable factor the energy dissipated there by auroral particles. The large- and small-scale average properties of field-aligned currents, determined from spacecraft observations, are reviewed here.  相似文献   

8.
Models of the cosmic-ray, -ray and synchrotron properties of the Galaxy allow conclusions to be drawn about the cosmic-ray injection spectrum and propagation parameters. While the simplest models fail to reproduce the data, reasonable extensions can explain a range of observational facts. Explanations for the diffuse -ray GeV excess found by EGRET are considered; inverse-Compton emission resulting from a hard electron injection spectrum appears most promising. Meanwhile the -ray emission at MeV energies is unlikely to originate entirely from cosmic-ray electrons, and a point source component is required in addition.  相似文献   

9.
This article reviews theories and observations related to effects produced by finite (and large) Larmor radii of charged particles in the magnetosphere. The FLR effects depend on =r H /L, wherer H is the Larmor radius andL is the spatial scale for field/plasma inhomogeneity. The parameter is a basic expansion parameter for most equations describing plasma dynamics in the magnetosphere. The FLR effects enter naturally the drift approximation for particle motion and represent also non-ideal MHD terms in the fluid formalism. The linear and higher order terms in lead to charge separation, energization of particles, and produce viscosity without collisions. The FLR effects introduce also important corrections to the dispersion relations for MHD waves and drift instabilities. Expansion of plasma into magnetic field leads to filamentation of the plasma boundary and to creation of structures with thickness less than an ion gyroradius. Large Larmor radius effects (1) in curved magnetic field geometry lead to stochastic behaviour of particle trajectories and to deterministic chaos. The tiny scale of the electron and ion gyroradii does not necessarily mean that FLR/LLR phenomena have negligible effect on the macroscopic dynamics and energetics of the whole magnetosphere. On the contrary, the small scale gyro-effects may provide the physical mechanism for gyroviscous coupling between the solar wind and the magnetosphere, the mechanism for triggering disruption of the magnetotail current layer, and the mechanism for parallel electric field that accelerate auroral particles.  相似文献   

10.
In several regions of the magnetosphere, perpendicular and/or parallel electric fields are found to be orders-of-magnitude larger than expected from simple considerations. Problems associated with these large fields that may be amenable to study through computer simulations are discussed. Regions in which large electric fields are observed include: a) The auroral ionosphere, where Langmuir soliton-like structures have been measured to contain plasma frequency oscillations as large as 500 mV/m, the envelopes of which have parallel electric fields of 100 mV/m lasting for fractions of a millisecond; b) The auroral acceleration region, where electrostatic shocks have been observed to contain perpendicular fields as large as 1000 mV/m and parallel fields as large as 100 mV/m, and where double layers having parallel fields up to 10 mV/m have been observed; c) The high latitude boundary of the plasma sheet, where turbulent electric fields as large as 100 mV/m have been seen along with quasi-static fields of 5–10 mV/m; d) Inside the plasma sheet, where fields of 5–10 mV/m have frequently been observed; e) The bow shock, where turbulent fields as large as 100 mV/m and d.c. fields of 5 mV/m normal to the shock have been seen.also Physics Department  相似文献   

11.
This is an observational review, with an emphasis on photometric data and their interpretation. Two lists are presented, one containing Cephei stars, and the other, Cephei suspects. These lists then serve as a basis for discussing such topics as the location of Cephei stars in the observational and theoretical H-R diagrams, the evolutionary state of these stars, the period-luminosity and period-luminosity-color relations, and observational identification of pulsation modes. The paper also includes references to recent work connected with the theoretical discovery that an opacity mechanism is responsible for the excitation of Cephei-star pulsations. Finally, observational programs for verifying the consequences of this discovery are suggested.Belgian Fund for Scientific Research (NFWO).  相似文献   

12.
Coronal transient phenomena   总被引:1,自引:0,他引:1  
Solar coronal transients, particularly those caused by flares and eruptive prominences, play a major role in the fields of solar-terrestrial physics and astrophysics. In the former field, coronal transients and their associated interplanetary disturbances are responsible for solar and galactic cosmic ray modulations, as well as planetary magnetospheric and ionospheric disturbances. In the latter field, supernovae remnants are scaled-up manifestations of such disturbances; that is they are stellar, rather than solar, coronal transients. Study of the more accessible solar transients is proving invaluable in both fields and is, therefore, selected for attention in this paper.A series of coronal transient observations is discussed in the spirit of a representative overview following some introductory remarks on the background solar wind. One of these observations is chosen because its interplanetary signature-the shock wave-was detected by two spacecraft at different heliocentric radii. Other cases are chosen because of the extended observations of embedded eruptive prominences. Progress is also being made in the interdisciplinary areas of optical imagery complemented with radio astronomical techniques.Finally, several recent theoretical models and MHD computer simulation studies are summarized. It is suggested that further comparison of specific events with such models promises a rich harvest of physical understanding of the origin, structure and interplanetary progeny of coronal transients.Paper presented at the IX-th Lindau Workshop The Source Region of the Solar Wind.  相似文献   

13.
This paper gives a review of the recent high-resolution H observations of solar flares and flare-productive active regions. From studies of the morphological and evolutional features of H flare emitting regions, two types of two-ribbon flares, which are termed separating two-ribbon flare and confined two-ribbon flare, are discussed. The former is characterized by conspicuous separating motions or expanding motions of the H two ribbons, whereas the latter shows only a short range of or no separating motions of the two ribbons. The explosive compact flares, which occur in some compact newly-emerging flux regions, are also discussed.Attention is paid to the successive and impulsive brightenings of H flare points which form the H flare kernels and the front lines of H two ribbons at the impulsive phases of flares. Temporal relationships between H line intensities or profiles and hard X-ray or microwave emissions are discussed to discriminate the energy transport mechanisms in the flare loops.H monochromatic image of high spatial resolution, at the present time, is the most sensitive detector for finding the first appearance of newly-emerging magnetic flux region and the developing features of sheared configuration of magnetic field, both of which are the key factors in flare energy build-up processes. It is suggested that the successive emergence of a twisted magnetic flux rope might be essential for the production of a major flare.Contributions from the Kwasan and Hida Observatories, Kyoto University, No. 292.  相似文献   

14.
Wibberenz  G.  le Roux  J.A.  Potgieter  M.S.  Bieber  J.W. 《Space Science Reviews》1998,83(1-2):309-348
In the present phase of the solar cycle no big transients leading to strong modulation had been observed after 1991. Apart from a few minor disturbances cosmic rays were still recovering to a new intensity maximum. It was suggested, therefore, that existing literature from previous cycles should be critically reviewed. The scene was set by the introductory papers on— phenomenology of cosmic ray modulation in successive solar cycles throughout the heliosphere— the present state of models for long term modulation and their shortcomings— the relation between cosmic ray variations and the magnitude of the interplanetary magnetic field (the CR-B-relation)— charge dependent effects.In the discussions, the study of propagating diffusive disturbances and the CR-B-relation played a central role. The difference was stressed between isolated transient disturbances in the inner solar system (Forbush decreases), and the long lasting, step-like decreases caused by merged interaction regions in the outer heliosphere. The recovery rates following the step-like decreases vary with the phase in the 22-year solar cycle. In some cases this requires a modification of existing drift models. In the outer heliosphere, the CR-B-relation leads to the result 1/ between the diffusion coefficient and the field magnitude . This simple result is a challenge for theoreticians to derive the perpendicular diffusion coefficient fromfirst principles. The three articles in this report essentially follow the list of open points and arguments just presented.The article "Observations and Simple Models" is organised around the model of a propagating diffusive barrier, its application to Forbush effects in the inner heliosphere and to decreases caused by merged interaction regions in the outer heliosphere. Acomparison of observed Forbush decreases with model predictions requires a careful separation of the two steps related to the turbulent region behind the shock front and the closed magnetic field regions of the ejecta (the interplanetary counterparts of coronal mass ejections). It is shown that models for propagating disturbances can be used to derive values of the diffusion coefficients phenomenologically, not only during the disturbance, but also in the ambient medium.The "Modeling of Merged Interaction Regions" summarizes the dynamic and time-dependent process of cosmic ray modulation in the heliosphere. Numerical models with only a time-dependent neutral sheet prove to be successful when moderate to low solar activity occurs but fail to describe large and discrete steps in modulated cosmic rays when solar activity is high. To explain this feature of heliospheric modulation, the concept of global merged interaction regions is required. The com-bination of gradient, curvature and neutral sheet drifts with these global merged interaction regions has so far been the most successful approach in explaining the 11-year and 22-year cycles in the long-term modulation of cosmic rays.The "Remarks on the Diffusion Tensor in the Heliosphere" describe available theories of perpen-dicular diffusion and drift, and discuss their relevance to cosmic rays in the heliosphere. In addition, the information about diffusion coefficients and spatial gradients obtained from the analysis of steady state anisotropies at neutron monitor energies is summarized. These topics are intimately related to the other two articles. They are also part of the general discussion about the "Diffusion Tensor throughout the Heliosphere" which played an important role in all working groups.  相似文献   

15.
Power-line harmonic radiation and the electron slot   总被引:1,自引:0,他引:1  
World maps of the occurrence of VLF emissions obtained by the satellites Ariel 3 and 4 reveal maxima above industrial regions of high power consumption in North America and Euro-Asia. A study of the generation and radiation of power line harmonics indicates that these may be a major source of the observed signals. The latter propagate in the whistler mode into the geomagnetically conjugate regions in the southern hemisphere. A particularly prominent zone of emission is obtained at VLF (3.2 kHz) over North America where frequent magnetospheric wave amplification/stimulated emission, up to 50 dB and typically 10 to 20 dB above a baseline level that we ascribe to power harmonic radiation (PLHR), is obtained at invariant latitudes 45 to 55° (2 < L < 3) centred on the electron slot. It appears that PLHR may be responsible for pitch angle diffusion of energetic electrons (E 100 keV) at large pitch angles by first-order resonance and thereby contribute to the formation of the electron slot. There is a strong seasonal variation in wave-amplification/stimulated emission which we suggest may be due to a variation in the ability of the waves to become entrapped in ducts where wave-amplification occurs through a phase-bunching process. There is a strong correlation between D ST and signal intensity, the latter lagging by 1–5 hr in the morning and 10 hr in the evening; here again wave-amplification appears to depend on duct formation and wave trapping therein. One or two (or multi) hop emissions occur with about equal probability at 3.2 kHz; at 9.6 kHz one hop are predominant.Paper presented at the Fifth International Wrocaw Symposium on Electromagnetic Compatibility, Wroclaw (Poland), 17–19 September, 1980. Sci. Rpt. 1978 (1), Sheffield Univ. Space Physics Grp.  相似文献   

16.
The Earth's auroral electrons produce copious non-thermal radio emissions of various types, including auroral kilometric radiation (AKR), whistler mode auroral hiss, mode conversion radiation such as auroral roar and MF-burst, and possibly HF/VHF emissions. In some cases, mechanisms have been identified and quantitatively described, whereby the energy of the auroral electrons is converted into electromagnetic radiation. In many other cases, the radiation mechanism, or the relative significance of several possible mechanisms, remains uncertain. This review covers fairly comprehensively experimental and theoretical research on types of auroral radiation other than AKR, concentrating on emissions with frequency higher than about 1kHz and treating only emissions which are unique to the auroral zone. The review covers both ground-based and in-situ observations. It covers a wide range of theoretical approaches, emphasizing those which at present appear most important for producing non-AKR auroral radiations.  相似文献   

17.
The coupling between the ionosphere and the outer magnetosphere depends on the topology of the geomagnetic field. Some aspects of the closed and open magnetospheric models are briefly discussed.The assumption that the geomagnetic field lines are equipotentials is critisized both on observational and on theoretical grounds. Measurements of H Doppler profiles, of precipitating particles above the ionosphere, and of charged particle densities in the magnetosphere indicate the existence of electric fields, E\\, parallel with the magnetic field.Two different models of E\\ are considered. Both models violate the condition of frozen-in magnetic fields. In one of them there are occasional transient electric field impulses along the field lines which cause precipitation splashes. The other model invokes electrostatic fields which vanish occasionally due to instabilities. This gives rise to precipitation splashes of about equal numbers of ions and electrons.The latter model seems to be favoured by known satellite data concerning the pitch angle distributions of electrons above the ionosphere.It is suggested that electric fields in space should be measured by satellites and rockets. Expected values of the fields in different regions of space are given.  相似文献   

18.
This paper presents a short summary of observations of coronal structures at microwaves using an instrument with high spatial resolution and good wavelength coverage. The comparison of the RATAN-600 data with optical observations of coronal loops in the green line and with the Very Large Array maps at 21 cm has shown that the loops represent only a small part of coronal matter, although their role may be of great importance in the physics of the solar corona. Prominence (filament) associated sources, especially peculiar ones, are also reviewed.  相似文献   

19.
The last decade has seen a period of rapid growth in our understanding of the processes which occur in the auroral regions. Much of our understanding is based on the copious new observations which have been made available in the auroral community. The present work is a short overview of the plasma conditions which obtain throughout much of the auroral region. It covers the diffuse and discrete auroral electron precipitation in the morning and evening oval, cusp, and polar cap. The ionospheric ion outflow throughout the high latitude regime is also described and related to the electron observations.  相似文献   

20.
Recent work on Cepheids is reviewed in the areas of (1) the large-amplitude mode behavior, (2) convection, and (3) Cepheid masses. Initial-value type nonlinear calculations have not yet yielded true double-mode behavior. Yet we have the beginnings of a promising theory of modal selection. Theoretical calculations also yield reasonably located red edges to Cepheid (and Cepheid-like) instability regions.Recent observational results have led to increased values of the pulsation mass, so that this mass is now in fair agreement with evolution theory. The Wesselink mass is also satisfactory. Thus now only bump and beat masses are possibly discrepant. Some possible ways which have been suggested to alleviate these discrepancies are reviewed. The proposal of helium enrichment in the outer stellar layers can apparently satisfactorily resolve the beat (and perhaps also the bump) mass anomaly. A recent suggestion that part of the pressure in the envelope is due to a tangled magnetic field (not unusually strong) resolves the above mass anomaly about as well as the helium-enrichment idea does.Recent results regarding duplicity and period changes in Cepheids are reviewed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号