首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
彗星中尘埃的带电特性和平衡电势的研究   总被引:2,自引:1,他引:1  
分析了彗星中尘埃粒子的带电特性,以及计算了彗星尘埃等离子体的典型参数.对Halley彗星和G-Z彗星进行了讨论,得出了彗星中尘埃平衡电势的一些主要规律.一般来说,这些规律也可以适用于其他等离子体彗星.  相似文献   

2.
彗星环境中尘埃等离子体的电荷涨落和静电波动   总被引:3,自引:1,他引:3  
本文分析了尘埃等离子体中尘埃颗粒的带电过程,给出了一套自洽的工流体方程组.运用这组方程研究了尘埃电荷的起伏涨落,得到了非磁化均匀尘埃等离子体中静电波动的色散关系.针对彗星空间环境中尘埃等离子体的特点,讨论了尘埃电荷的涨落对各种静电波动的影响.  相似文献   

3.
本文运用自洽的三流体方程组, 考虑了尘埃的充电过程, 得到均匀磁化尘埃等离子体中垂直于磁场传播的尘埃磁声波的色散关系, 结合空间环境讨论了尘埃电荷的相关涨落对尘埃磁声波的影响.   相似文献   

4.
本文根据尘埃吸收系数Qv的不同模型(由实验和观测建立的模型)求解了不同性质的尘埃的辐射平衡方程.得到了性质不同,颗粒大小不同,日心距不同的尘埃的温度.如果我们把邻近两个波长的观测到的强度比值所确定的色温度当作尘埃的真实温度,那么我们就能够通过近红外的地面观测来研究尘埃的性质(而不要远红外的空间观测).   相似文献   

5.
月球受光面上月尘静电浮扬特性分析   总被引:1,自引:1,他引:0  
基于单粒子轨道理论及空间尘埃等离子体充电方程,建立了月球受光面上尘埃微粒的静态荷电模型.基于光电子能量Maxiwellian分布假设,确定了月面垂直空间电场强度和光电子鞘层内带电粒子密度的函数表达式.利用牛顿运动定律和静电场力表达式,构建了月球受光面上尘埃微粒的静电浮扬动力学模型,并进行月尘静态浮扬特性的数值计算.研究结果显示:太阳高度角与颗粒粒径是控制月尘静电浮扬发生及动力学特性的两个基本参量;月尘静电浮扬发生在月球的黎明和黄昏;随着粒径的减少,月尘颗粒的最大浮扬高度不断增加.  相似文献   

6.
《太空探索》2005,(9):32
不久前,哈勃空间望远镜在可视波段上拍摄到了围绕在明亮恒星北落师门(南鱼座α)周围的尘埃带,照片为尘埃带中行星系统的存在提供了有力的证据。照片左边的部分超出了望远镜的视野,相对于我们视线,尘埃环是倾斜的。  相似文献   

7.
针对在轨运行航天器在空间等离子体环境和空间带电粒子活动下诱发航天器表面梯度电势存在的客观现实,航天器在空间碎片的撞击下会诱发表面带电或深层电介质带电的航天器放电。为了在实验室模拟航天器表面存在电势差的真实情况,采用对航天器外表面分割的方法,在分割的表面间预留不同间距且在2靶板间加装电阻的方法创造具有梯度电势的高电势2A12铝板作为靶板。利用自行构建的梯度电势靶板的充放电测试系统、超高速相机采集系统和二级轻气炮加载系统,开展高速撞击梯度电势2A12铝靶的实验室实验。实验中,弹丸以入射角度为60°(弹道与靶板平面的夹角)、撞击速度约为3 km/s的条件撞击间距分别为2、3、4和5 mm的2A12铝高电势靶板,利用电流探针和电压探针采集放电电流和放电电压。实验结果表明:放电产生的等离子体形成了高电势与低电势靶板间的放电通道,且在梯度电势靶板间距分别为2、3 mm时诱发了一次放电,放电电流随高低电势靶板间间距的增加而减小;在梯度电势靶板间距分别为4、5 mm时诱发了二次放电,放电电流随高低电势靶板间间距的增加变化不明显。   相似文献   

8.
通常采用ECR等离子体源产生的等离子体的温度和密度都比较大,通过附加适当目数的栅网,并在栅网上加一定的偏置电位来对等离子体参数,尤其是温度,密度进行调整,满足空间等离子体环境模拟要求,本文利用14目,25目的栅网,对已有的地面实验室空间等离子体环境进行了改进,得到了更加接近空间等离子体参数的一个地面模拟环境。  相似文献   

9.
庚晋 《飞碟探索》2003,(3):25-25
从现存的记录片中人们可以清楚地看见人类登上月球的第一个脚印。其实,在登月舱登陆时为减速而喷出的气体早就把厚厚的月球尘埃吹干净了。为了安全,宇航员是在登月舱着陆一两个小时才走出舱门的,那时被吹起的尘埃已经落下。2002年9月7日,瑞典国家自然历史博物馆官员宣布,该馆收藏的四粒月球尘埃在展览中被盗。这些半径只有0.1厘米的尘埃被放在一个硬币状的透明胶囊里,外面还有不锈钢圆柱保护,圆柱顶部开有玻璃窗,供参观者欣赏。案发当天,博物馆职员发现有人砸碎了圆柱顶部的玻璃,偷走了放在其中的月球尘埃。这些月球尘埃是1969年“阿波罗11…  相似文献   

10.
邵福元 《飞碟探索》2013,(11):26-27
在2003年8月25日,美国航空航天局的斯皮策空间望远镜发射升空。转眼间10年已过,现在就让我们回顾一下斯皮策空间望远这10年的收获 1.大麦哲伦星云的红外特写字宙中的尘埃云在这张红外特写中泛起涟漪,它是我们银河系的卫星星系——大麦哲伦星云。事实上,这张炫酷的图像展现出在邻近我们的矮星系中充满了大量的尘埃星云,就如同沿着银河系盘面分布的密集尘埃一样。图像中,斯皮策数据以蓝色表示,代表着被年轻恒星所加热的尘埃;赫歇尔空间天文台提供的数据以红色和绿色表示,代表着来自恒星形成刚刚开始或已经结束的中低温区域的尘埃。由于被产生的尘埃所主导,大麦哲伦星云在红外波段下的外观与其光学图像显著不同。但是这个星系中著名的蜘蛛星云依然清晰可见,在图上对应的是中心偏左最明亮的那块区域。大麦哲伦星云宽约30000光年,距离我们仅有160000光年远。  相似文献   

11.
GIOTTO, the probe which is presently developed by the European Space Agency, will encounter comet Halley in March 1986 with a relative velocity of 69 km/s. The fore section of the surface will be submitted to the bombardment of dust grains and neutral molecules in the final phase of the mission, like that of an Earth orbiter during atmospheric re-entry. These particles have a kinetic energy of 24 eV per a.m.u.; they produce secondary ions and electrons which form a plasma cloud around the body and control the electric potential of its surface. This paper is a review of the work which has been performed on the subject by dedicated study groups; the purpose of their action was to gather information and produce new findings which might have an influence on the design of the spacecraft and help in the interpretation of the data collected by the scientific payload.

The effect of impact induced plasma may already be significant at 105 km from the comet nucleus; at a distance of 1000 km the flux of ions and electrons produced by cometary dust and neutrals will possibly exceed that of the ambient plasma by more than three orders of magnitude. It is expected that the spacecraft surface potential will be positive and will reach at least a few tens of volts; coating the leading surface of the spacecraft with a thin layer of gold or silver will help reducing the emission of ions from neutral gas. Computer simulation models are used to predict the structure of the charged particle density distribution in the vicinity of the surface. Effects associated with the wake and differential charging are also discussed. The significance of these results is conditioned by the validity of the models and the largest source of uncertainty seems to be associated with the plasma generated by dust impact.  相似文献   


12.
Dust particles of meteoric origin in the lower E-region can affect the conductivity parameters by varying the effective collision frequency and by causing electron bite outs through the capture of ambient electrons. In magnetized plasma, neutral dust particles can alter the effective collision frequency parameters and thus affect the Pedersen and Hall conductivities in the electrojet region. The Cowling conductivity profile is determined by the height profiles of the Hall and Pedersen conductivities. The collision parameters altered by the neutral dust particles can be considerably different from those estimated from atmospheric models, in the lower E-region heights where dust particles of meteoric origin are known to exist in large numbers. A significant fraction of these dust particles may capture free electrons from the ambient medium and get charged negatively. This can result in reduction in the number density of free electrons especially below the electrojet peak where the dust particles can be present in large numbers, at least on days of large meteor showers. This, in turn, can once again alter the vertical profile of the east–west Hall current driven by the vertical Hall polarization field and under favorable conditions, can even account for the reversal of the electrojet currents below the current peak. Assuming a realistic model for the distribution of neutral dust particles, the conductivity parameters are estimated here. Conditions under which the dust particles can cause partial reversals in the electrojet currents are critically examined here.  相似文献   

13.
The Moon is immersed in plasma environment. The most interesting challenge of the lunar plasma– field environment is that it is alternatively dominated by the extended but variable outer atmosphere of the Earth – the magnetosphere – and by the extended but highly variable solar atmosphere – the solar wind. Understanding the plasma environment and its interaction with the lunar surface will be beneficial to both manned and robotic surface exploration activities and to scientific investigations. Presented is a preliminary map of variations of lunar surface electric potential over the day side and night side using probe equations and a discussion on dust dynamics in this E-field structure using the data from Electron Reflectometer in Lunar Prospector spacecraft during 1998–1999. On the day side, potential is around 5 V and on the night side it reaches up to −82 V. On the night side region, only highly energetic electrons can overcome this large negative potential. The variation at electron temperature (Te) strongly reflects in the surface potential. The potential reaches to a value of −82 V for Te = 58 eV. Surface charging causes the electrostatic transport of charged dust grains. Dust grain size of 0.1 μm shows a levitation height of 4.92 m on lunar day side, 748 m on terminator region and 3.7 km on the night side. The radius of maximum sized grain to be lofted, Rmax, peaks at the terminator region (Rmax = 0.83 μm). At the transition region dust levitation is almost absent. This region is most suited for exploration activities as the region is free from hazards caused by lunar dust.  相似文献   

14.
本文研究了由背景热电子、背景冷质子(H+)和强各向异性氧离子(O+)束组成的模型等离子体中静电O+迴旋波和离子声波不稳定性.结果表明,低频(|ω|<σpp表示质子迴旋频率)静电O+迴旋波和离子声波可以由极光场线上上行O+束来激发.上行O+束可能是极光场线上低频静电不稳定性一个重要的自由能源.   相似文献   

15.
In the present work, we investigate the sticking process of a hydrogen atom on the surface of dust grains. As a realistic model for the icy mantle of dust grains, we produced slab-shaped amorphous water ice with infinite area by classical molecular dynamics (MD) computational simulation using two-dimensional periodic boundary condition. The resulting amorphous water ice slabs at 10 K and 70 K were found to be in good agreement with the experimental high-density and low-density amorphous water ice, respectively. Then, we investigated the dynamical behaviors of an impinging H atom on the surface of it by MD simulations. The sticking probabilities of incident H atoms with several initial temperatures on 10 K and 70 K ice were obtained. It was found that most of H atoms colliding with the 10 K ice stuck on the surface of it. After having stuck, the impinging H atoms diffused on the surface of ice and became trapped in one of potential wells on the surface. The mobility of a H atom on the surface of the amorphous water ice was found to depend only upon the temperature of ice.  相似文献   

16.
In this paper we re-examined the fundamental physics of charging of a dust particle in the moon environment by tenuous anisotropic solar wind plasma. The majority of work on dusty (complex) plasmas is largely concerns with laboratory plasmas, in which charging process of dust grains is very fast, thus making practical the working concept of dynamically equilibrium floating potential and grain charge. However, solar wind plasma parameters are considerably different at the moon orbit, and we found the characteristic charging time of lunar dust grains to be considerably longer, ranging from 3 to 4.6 min for micron size particles, and up to 7.6 h for 10-nm grains, depending on the value of plasma streaming velocity. These findings make it clear that the transient stage of charging process is important in the moon environment, and equilibrium floating potential and grain charge could be considered as long time asymptotic values. For this reason we re-formulated the moon dust charging process as an inherently time-dependent problem and derived the time-dependent charging equation for the grain potential for general case of anisotropic solar wind plasma. Using the results of our kinetics analysis we found that the distribution of charge density over grain surface submerged into solar wind plasma is highly anisotropic, thus making the OML model, which is based on the assumption of isotropic distribution of surface charge density, not applicable to the grain charging problem by the solar wind plasma.  相似文献   

17.
The surface of a spacecraft is submitted to the bombardment of dust grains and neutral molecules during an atmospheric re-entry or a cometary fly-by. These particles create secondary ions and electrons which form a plasma cloud around the body and control the electric potential of its surface. Computer simulation models are used to predict the structure and dynamic behaviour of the charged particle density distribution for the cases of planar and cylindrical bodies. It is found that an ion and an electron layer form in the vicinity of the surface at distances of the order of the ion and electron Debye lengths, respectively. The potential of the surface is positive on the average and is a function of the electron mean kinetic energy. A positive potential barrier develops at the location of the ion layer and its height is governed by the sum of the electron and ion mean kinetic energies. The threat caused by this interaction to the spacecraft and its instrumentation is discussed and an in-situ observation of this phenomenon is proposed as a possible diagnostic technique of the environment.  相似文献   

18.
The principal observational properties of silicate core-organic refractory mantle interstellar dust grains in the infrared at 3.4 microns and at 10 microns and 20 microns are discussed in terms of the cyclic evolution of particles forming in stellar atmospheres and undergoing subsequent accretion, photoprocessing and destruction (erosion). Laboratory plus space emulation of the photoprocessing of laboratory analog ices and refractories are discussed. The aggregated interstellar dust model of comets is summarized. The same properties required to explain the temperature and infrared properties of comet coma dust are shown to be needed to account for the infrared silicate and continuum emission of the beta Pictoris disk as produced by a cloud of comets orbiting the star.  相似文献   

19.
The physics of using a radioastronomy receiver as an in-situ detector of plasma, and in some cases of molecules and dust grains is reviewed, and applied to ICE encounter with comet Giacobini-Zinner. In the comet's plasma tail, the receiver recorded mostly quasi-thermal plasma noise. The spectroscopy of that noise yields the density and temperature of the main (cold) electron population, and parameters of hot electrons. The absence of grain detection yields a quantitative upper limit on grain mass or flux. An additionnal diagnosis is provided by partial occultations of both the radio galactic noise and the terrestrial kilometric radiation. Implications for comparison with earth-based measurements are indicated.  相似文献   

20.
While interplanetary dust constitutes a primary source of cosmic particulate matter in planetary magnetospheres, the debris produced by its impact with small satellites and ring material provides an important secondary source. Internal processes, such as volcanic activity, particularly in the smaller satellites, could result in a third source. In the case of the terrestrial magnetosphere there are also artificial (internal) sources: 1–10μ sized A?2O3 particles injected by solid rocket mortar burns between near earth and geosynchronous orbit constitute one such source, while the fragments of larger bodies (artificial satellites) due to explosions (e.g., “killer satellites”) and collisions constitute another. Finally, if we include the purely induced cometary magnetosphere among planetary magnetospheres, the injection of cometary dust into it due to entrainment by the outflowing gases constitutes another source.As a result of being immersed in a radiative and plasma environment these dust grains get electrically charged up to some potential (positive or negative). Particularly in those regions where the magnetospheric plasma is hot and dense and their own spatial density is low, the dust grains could get charged to numerically large negative potentials.While this charging may have physical consequences for the larger grains, such as electrostatic erosion (“chipping”) and disruption, it also can effect the dynamics of the smaller grains. Indeed, the small but finite capacitance of these grains, which leads to a phase lag in the gyrophase oscillation of the grain potential, could even lead to the permanent magneto-gravitational capture of interplanetary grains within planetary magnetospheres in certain situations. Here we will review the sources of dust in planetary magnetospheres and discuss their physics and their dynamics under the combined action of both planetary gravitational and magnetospheric electromagnetic forces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号