首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The program of physical studies on the Vernov satellite launched on July 8, 2014 into a polar (640 × 830 km) solar-synchronous orbit with an inclination of 98.4° is presented. We described the complex of scientific equipment on this satellite in detail, including multidirectional gamma-ray detectors, electron spectrometers, red and ultra-violet detectors, and wave probes. The experiment on the Vernov satellite is mainly aimed at a comprehensive study of the processes of generation of transient phenomena in the optical and gamma-ray ranges in the Earth’s atmosphere (such as high-altitude breakdown on runaway relativistic electrons), the study of the action on the atmosphere of electrons precipitated from the radiation belts, and low- and high-frequency electromagnetic waves of both space and atmospheric origin.  相似文献   

2.
(SIGMA: Project of a high resolution space observatory for gamma rays sources)—The SIGMA space observatory is designed to obtain images of the sky in the hard X-ray/low energy gamma-ray domain (30–2000 keV range), with an angular accuracy of a few are min, within a field of ~7° × 7°, and a sensitivity for point sources down to a level of a few 10?6 photons cm?2s?1keV?1 (exposure 24 hr). The instrument is designed using the principle of the coded aperture mask telescope with a position sensitive detector derived from the Anger gamma-camera which is used in nuclear medicine. The pseudo-images of the sky are accumulated on board and transmitted to the ground stations for decoding processing. The gross weight of the instrument is 750 kg and its overall dimensions are 3 m long and 1.2 m in diameter.  相似文献   

3.
4.
Using a detector of near ultra-violet (UV) emission (wavelength range 300–400 nm) [1] onboard the Universitetsky-Tatiana satellite with an orbit height of 950 km and inclination of 81° we have detected and studied short UV flashes [2–5]. In this paper the observed UV flashes are classified according to the type of their time profiles, and the times of emission intensity rise and decay are investigated in every flash. Using the data on time profiles it turned out to be possible to estimate the flash energy in the atmosphere even in case of saturation of a signal measuring channel at the maximum of emission. The energy spectrum of observed flashes is estimated. Time and energy characteristics of the flashes are important for choosing a model of development of electric discharges in the upper atmosphere that are responsible for observed emission.  相似文献   

5.
The paper describes cases of observations of narrow energy spectrum electron flows up to 500 eV on the INTERBALL Tail Probe. About 30 events were registered in 1996 on the night side of the Earth predominantly in 03h–06h local time sector. Quasimonochromatic electrons (QME) were registered by all 8 spectrometer channels oriented along the spacecraft meridian with angles of the field of view centers relative to sunward direction from 11° to 169°. Quasimonochromatic electrons were observed simultaneously with large fluxes of high temperature magnetospheric electrons. The dependences of QME energy on both fluxes and energy of high-energy magnetospheric electrons were observed in every event. The ratio of full width at half height (FWHH) to mean energy of QME was ~20%. This electron component with quasimonochromatic energy probably was originated on the spacecraft surface. The registered energy of QME was apparently due to difference of potentials between spacecraft surface from which electron beam originated and the location of electron spectrometer.  相似文献   

6.
The paper is devoted to searching for a possible phenomenon of the gravitational lensing of cosmic gamma-ray bursts on celestial bodies of a globular cluster type (mesolensing). If this phenomenon takes place, gamma-ray bursts should have light curves with two or three similar components whose spectra are identical. These components are separated in time by a few seconds. Using a statistical method developed for comparing the components, we have found in the BATSE catalog 11 candidates of gamma-ray bursts with mesolensing for the entire time of operation of the Compton Gamma-Ray Observatory (1991–2000). Two of these 11 gamma-ray bursts have light curves with three components. The possibility of gravitational mesolensing of these gamma-ray bursts on the King's type bodies is investigated.  相似文献   

7.
研究高压太阳电池阵静电放电产生脉冲信号的特性,有助于深入了解太阳电池阵充放电形成机制。在试验中,利用电子枪模拟GEO空间带电环境,辐照太阳电池样品表面。利用电流探头CT-2、单极子天线和数字存储示波器测量静电放电所产生的脉冲电流、辐射电场并记录其波形。试验结果表明:太阳电池在静电放电过程中产生了脉冲宽度为几μs的瞬态电流,其峰值幅度为几A;辐射电场的脉冲信号持续时间几百ns至几个μs,其峰值幅度达数百V/m。脉冲信号的时域特征表现为脉冲群,其波形具有陡峭的前沿,能量分布的频率范围主要集中在0.1~50 MHz之间。最后根据上述研究对在轨静电放电测试仪的设计提出建议。  相似文献   

8.
We describe the instrument design and detector development for MANES which has been selected to fly on the Mars 2003 Lander. Section 1 explains the need for the spectrometer in determining the increased risk of carcinogenesis for astronauts. Section 2 presents the instrument design including an outline drawing, a cross-sectional view and a detailed block diagram. Sections 3 and 4 describe the low and high energy detector components of the spectrometer and present responses to monoenergetic neutron beams. Sections 5 and 6 explain the design approaches to charged particle discrimination and instrument transfer function modeling.  相似文献   

9.
We present the characteristics of short (duration less than 1 min) increases of the counting rate of electrons with energies >0.08 MeV observed in low-latitude (L < 2.0) regions of near-Earth space in the course of the GRIF experiment on the Spektr module of the Mir orbital station. The measurements were carried out using a set of instruments including X-ray and gamma-ray spectrometers, as well as detectors of electrons, protons, and nuclei with large and small geometrical factors, which allowed one to detect the fluxes of charged particles both in the region of the Earth’s radiation belts and in regions close to the geomagnetic equator. As a result of more than 1.5 years of observation, it is demonstrated that short increases in the intensity of electrons of subrelativistic energies are detected not only in the regions of the near-Earth space known as “precipitation zones” (1.7 < L < 2.5), but in high-latitude regions (up to the geomagnetic equator, L < 1.1) as well. Two types of increases of the electron counting rate are found: either fairly regular increases repeating on successive orbits or increases local in time. The latter type of increases can be caused by a short enhancement of electron flux on a given drift shell. The results of our measurements have shown that the duration of the detected increases in intensity can be rather short, as little as 20–30 s. Therefore, in the case of large amplitudes, such increases of the counting rate of electrons can imitate astrophysical events of the type of cosmic gamma-ray bursts in the detectors of hard X-ray and gamma radiation.  相似文献   

10.
We have investigated how morphological biosignatures (i.e., features related to life) might be identified with an array of viable instruments within the framework of robotic planetary surface operations at Mars. This is the first time such an integrated lab-based study has been conducted that incorporates space-qualified instrumentation designed for combined in situ imaging, analysis, and geotechnics (sampling). Specimens were selected on the basis of feature morphology, scale, and analogy to Mars rocks. Two types of morphological criteria were considered: potential signatures of extinct life (fossilized microbial filaments) and of extant life (crypto-chasmoendolithic microorganisms). The materials originated from a variety of topical martian analogue localities on Earth, including impact craters, high-latitude deserts, and hydrothermal deposits. Our in situ payload included a stereo camera, microscope, M?ssbauer spectrometer, and sampling device (all space-qualified units from Beagle 2), and an array of commercial instruments, including a multi-spectral imager, an X-ray spectrometer (calibrated to the Beagle 2 instrument), a micro-Raman spectrometer, and a bespoke (custom-designed) X-ray diffractometer. All experiments were conducted within the engineering constraints of in situ operations to generate realistic data and address the practical challenges of measurement. Our results demonstrate the importance of an integrated approach for this type of work. Each technique made a proportionate contribution to the overall effectiveness of our "pseudopayload" for biogenic assessment of samples yet highlighted a number of limitations of current space instrument technology for in situ astrobiology.  相似文献   

11.
One of the goals of the Lomonosov satellite designed by scientists of Moscow State University is to study the prompt emission of cosmic gamma-ray bursts. This paper describes the gamma-ray burst monitor in the gamma-ray range (the BDRG instrument) and the wide-field optical cameras (the SHOK instrument) for detecting both the gamma-ray burst prompt emission and its precursors.  相似文献   

12.
The variations in the spatial structure and time in electron fluxes with E = 235–300 keV in the slot region (2 < L < 3) between the radiation belts in the period of November 1, 2014 through December 8, 2014 during weak and moderate geomagnetic disturbances (Kp < 4, Dst >–60 nT) are analyzed based on the data of the RELEC complex on board the Vernov satellite (the height and inclination of the orbit are from 640 to 830 km and 98.4°, respectively). Irregular increases in the fluxes of such electrons and formation of a local maximum at L ~ 2.2–3.0 were observed. It has been shown that the intensity of this maximum is inversely proportional to the L value and grows with an increase in the geomagnetic activity level. New features discovered for the first time in the dynamics of radiation belt electrons manifest in the variations in the local structure and dynamics of fluxes of subrelativistic electrons in the slot region.  相似文献   

13.
14.
An analysis of the electron density measurements (Ne) along the flyby trajectories over the high-latitude region of the Northern Hemisphere under winter conditions in 2014 and 2016 has shown that the main large-scale structure observed by Swarm satellites is the tongue of ionization (TOI). At the maximum of the solar cycle (F10.7 = 160), the average value of Ne in the TOI region at an altitude of 500 km was 8 × 104 cm–3. Two years later, at F10.7 = 100, Ne ~ 5 × 104 cm–3 and Ne ~2.5 × 104 cm–3 were observed at altitudes of 470 and 530 km, respectively. During the dominance of the azimuthal component of the interplanetary magnetic field, the TOI has been observed mainly on the dawn or dusk side depending on the sign of B y . Simultaneous observations of the convective plasma drift velocity in the polar cap show the transpolar flow drift to the dawn (By < 0) or dusk side (B y < 0). Observations and numerical simulation of the Ne distribution have confirmed the significant role of the electric field of the magnetospheric convection in the generation of large-scale irregularities in the polar ionosphere.  相似文献   

15.
This paper presents some approaches to the development of advanced detectors and to miniaturized instrument design which are pursued in the Institute of Space Sensor Technology of DLR (the German Aerospace Research Establishment). The instrument design approach is demonstrated for a low-weight (3 kg) dual camera system with narrow-angle in-track stereo and wide-angle multispectral features. Each camera has its own signal processor and 0,5 G Bit mass memory. The activities for advanced detector development are concentrated on two different kinds of detectors and instrumentations: infrared detector arrays and instruments at wavelengths out to about 240 μm, and superheterodyne receivers in the submillimeter and far-infrared spectral ranges.  相似文献   

16.
红蓝光敏探测器空间环境效应探测数据分析   总被引:1,自引:1,他引:0  
红蓝光敏太阳电池空间环境效应探测器利用镓铟磷和三结砷化镓太阳电池来探测空间污染、原子氧和辐射环境及效应,搭载在中国空间技术研究院自主研制的“新技术验证一号”卫星上。文章通过分析红蓝光敏探测器在轨1年时间的探测数据,得到如下结论:红蓝光敏探测器污染电池板功率下降2.7%,等效污染累积增加量2.23×10^-5 g/cm^2,日均6×10^-8 g/cm^2;原子氧探测器在轨道高度499.226 km运行11个月,原子氧积分通量探测数据为9.7×10^20 AO/cm^2;辐射效应探测器(三结砷化镓太阳电池)在轨1年后累计接受辐射剂量(等效1 MeV电子注量)5.49×10^11 e/cm^2。  相似文献   

17.
The SPICAM experiment onboard the Mars-Express spacecraft includes sounding the Martian atmosphere in the ultra-violet (118–320 nm) and near IR (1–1.7 μm) ranges. The infrared spectrometer operates in the range of 1–1.7 μm with a resolution of 3.5 cm?1 in the mode of nadir observations and solar and stellar occulations. This paper is devoted to analyzing the basic results of nadir observations of the infra-red SPICAM channel during the first Martian year of the instrument operation: from January 2004 to November 2005. One of the primary goals of SPICAM-IR is water vapor monitoring in the atmosphere of Mars in the band of 1.37 μm and ozone abundance determination from the day-time airglow of molecular oxygen O2(a 1Δg) in the band of 1.27 μm. Simultaneous measurements of these minor constituents of the planet are necessary for understanding photochemical processes in the Martian atmosphere. The degree of their anticorrelation and a comparison with the results of photochemical modeling of the atmosphere will contribute to our knowledge of the Martian atmosphere stability.  相似文献   

18.
Liulin, a dosimetry-radiometry system, was developed to satisfy the requirements for active flux and dose rate measurements for the flight of the second Bulgarian cosmonaut in 1988. The system consists of a compact battery-operated silicon solid state detector unit and a read/write microcomputer and telemetry unit. We describe the pre-flight calibrations with charged particles, using radioactive sources and accelerated 170 MeV/nucleon proton and alpha particles at the Dubna, Russia cyclotron. We discuss comparisons with data obtained on Mir with the French-built tissue equivalent LET spectrometer NAUSICAA. Lastly, we describe post-flight calibrations performed with 1 GeV/nucleon 56Fe ions at the Brookhaven National Laboratory AGS accelerator, where the instrument was mounted in tandem with several thin position-sensitive silicon detectors behind a stopping target. The silicon detectors provided an energy spectrum for the surviving charged nuclear fragments for which the flux and absorbed dose were recorded by Liulin.  相似文献   

19.
The determination of the composition of materials that make up comets is essential in trying to understand the origin of these primitive objects. The ices especially could be made in several different astrophysical settings including the solar nebula, protosatellite nebulae of the giant planets, and giant molecular clouds that predate the formation of the solar system. Each of these environments makes different ices with different composition. In order to understand the origin of comets, one needs to determine the composition of each of the ice phases. For example, it is of interest to know that comets contain carbon monoxide, CO, but it is much more important to know how much of it is a pure solid phase, is trapped in clathrate hydrates, or is adsorbed on amorphous water ice. In addition, knowledge of the isotopic composition of the constituents will help determine the process that formed the compounds. Finally, it is important to understand the bulk elemental composition of the nucleus. When these data are compared with solar abundances, they put strong constraints on the macro-scale processes that formed the comet. A differential scanning calorimeter (DSC) and an evolved gas analyzer (EGA) will make the necessary association between molecular constituents and their host phases. This combination of instruments takes a small (tens of mg) sample of the comet and slowly heats it in a sealed oven. As the temperature is raised, the DSC precisely measures the heat required, and delivers the gases to the EGA. Changes in the heat required to raise the temperature at a controlled rate are used to identify phase transitions, e.g., crystallization of amorphous ice or melting of hexagonal ice, and the EGA correlates the gases released with the phase transition. The EGA consists of two mass spectrometers run in tandem. The first mass spectrometer is a magnetic-sector ion-momentum analyzer (MAG), and the second is an electrostatic time-of-flight analyzer (TOF). The TOF acts as a detector for the MAG and serves to resolve ambiguities between fragments of similar mass such as CO and N2. Because most of the compounds of interest for the volatile ices are simple, a gas chromatograph is not needed and thus more integration time is available to determine isotopic ratios. A gamma-ray spectrometer (GRS) will determine the elemental abundances of the bulk cometary material by determining the flux of gamma rays produced from the interaction of the cometary material with cosmic ray produced neutrons. Because the gamma rays can penetrate a distance of several tens of centimeters a large volume of material is analyzed. The measured composition is, therefore, much more likely to be representative of the bulk comet than a very small sample that might have lost some of its volatiles. Making these measurements on a lander offers substantial advantages over trying to address similar objectives from an orbiter. For example, an orbiter instrument can determine the presence and isotopic composition of CO in the cometary coma, but only a lander can determine the phase(s) in which the CO is located and separately determine the isotopic composition of each reservoir of CO. The bulk composition of the nucleus might be constrained from separate orbiter analyses of dust and gas in the coma, but the result will be very model dependent, as the ratio of gas to dust in the comet will vary and will not necessarily be equal to the bulk value.  相似文献   

20.
The estimation of land surface fluxes has been recognized in the last ten years as a major scientific issue for the improvement of our knowledge on heat and water budgets and therefore of models in meteorology, hydrology, agriculture and environment. Remote sensing is an adequate mean for filling the gap which exists between small scale instruments or modeling (10m) and the regional or global scales where they have to be determined with a typical grid element of the order of 1 to 10 km. IRSUTE (for Infra Red miniSatellite Unit for Terrestrial Environment) is a scientific small satellite mission providing thermal imagery for the determination and analysis of soil/vegetation/atmosphere processes at the field scale and therefore for providing the necessary data for a scaling-up of these processes from local to regional scales. The main specifications, will allow this instrument to optimize the correction of the sensed radiance and to retrieve the fluxes with an accuracy of the order of 50w/m2 (or 0.8mm/day). IRSUTE is designed to have high spatial resolution (50m), across and along track viewing capabilities, 5 channels : visible/NIR, 3.7 μ, and 3 TIR in the 8–11 μm band with a good radiometric sensitivity (NEΔT = 0.1 K). The instrument is to be implemented onboard a small satellite (typically a PROTEUS platform) placed on a sun-synchronous orbit allowing high repetitivity (1 to 3 days). It is based on the push-broom technique which uses IR-CCD linear array detectors positioned in the cryocooled focal plane of a large bandwidth collecting optics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号