首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 246 毫秒
1.
According to the data of the BMSW/SPEKTR-R instrument, which measured the density and velocity of solar wind plasma with a record time resolution, up to ~3 ×10–2 s, the structure of the front of interplanetary shocks has been investigated. The results of these first investigations were compared with the results of studying the structure of the bow shocks obtained in previous years. A comparison has shown that the quasi-stationary (averaged over the rapid oscillations) distribution of plasma behind the interplanetary shock front was significantly more inhomogeneous than that behind the bow-shock front, i.e., in the magnetosheath. It has also been shown that, to determine the size of internal structures of the fronts of quasi-perpendicular (θBN > 45°) shocks, one could use the magnetic field magnitude, the proton density, and the proton flux of the solar wind on almost equal terms. A comparison of low Mach (М А < 2), low beta (β1 < 1) fronts of interplanetary and bow shocks has shown that the dispersion of oblique magnetosonic waves plays an essential role in their formation.  相似文献   

2.
Based on the data of the BMSW instrument installed on the of SPEKTR-R spacecraft, as well as according to the data of instruments of the WIND spacecraft, etc., using two examples, the paper has studied the role of ions reflected from the front and associated structural features of quasi-perpendicular interplanetary shocks (IS) with the Alfvén Mach number М A lower than the first critical Mach number М c1 . It has been shown that BSs with the finite parameter 0.1 < β1 < 1 contain a small fraction of reflected protons, which play a significant role in forming the front structure (β1 is the ratio of gas-to-magnetic pressure before the shock front). In particular, in the case of a perpendicular shock recorded on August 24, 2013 (the angle between the magnetic field direction and the normal to the front θBn ≈ 85°), an IS with a small Mach number (МA ≈ 1.4) and small β1 ≈ 0.2 is shown that the interactions of reflected ions with inflowing solar wind may result in the collisionless heating of ions in front of and behind it. The case of the oblique (θBn = 63°) IS on April 19, 2014 with a small Mach number (М A ≈ 1.2) and small β1 ≈ 0.5 has been investigated. It has been found that, before the front, there is a sequence of trains of magnetosonic waves, the amplitude of which decreases to zero upon increasing their distance from the front. The mechanism of their formation is associated with the development of instability caused by the ions reflected from the front.  相似文献   

3.
Spatial structure of the magnetosheath of the Earth was studied under the conditions when no sharp (more than 40° during 5 min) changes in the interplanetary magnetic field direction were observed. On the basis of 24 flights of the Interball-1 satellite through the magnetosheath, it is found that three regions differing from each other by parameters of the field and plasma can be observed in the magnetosheath under the above-indicated conditions. These regions also differ from the solar wind region before front of the Earth’s magnetospheric bow shock. Empirical distributions of parameters were studied in each region. Taking into account the influence of the interplanetary magnetic field direction on the processes in the magnetosheath, the cases of quasi-perpendicular and quasi-parallel shock waves were considered separately. The study showed that the distribution of parameters in the selected regions (in the solar wind before front of the bow shock, in the magnetosheath behind the bow shock (post-shock), in the region of the magnetosheath with minimal fluctuations in the field, and in the inner magnetosheath) differ from each other at any interplanetary magnetic field direction.  相似文献   

4.
A weak but statistically reliable dependence of the diurnal activity of oscillations in the ionospheric Alfvén resonator on orientation of the interplanetary magnetic field ahead of the magnetospheric front has been detected based on observations of ULF oscillations at Sayan solar observatory Mondy of the Institute of Solar–Terrestrial Physics. The interpretation of the result has been proposed. The essence is that the electromagnetic fluctuations penetrate into the magnetosphere from the interplanetary environment and influence the ionospheric resonator. The formulation of the problem and the method of solving it are part of the broad program of the experimental and theoretical study of the influence of the interplanetary magnetic field on the oscillation regime of ULF oscillations of the magnetosphere.  相似文献   

5.
The main goal of this paper is to compile a catalog of large-scale phenomena in the solar wind over the observation period of 1976–2000 using the measurement data presented in the OMNI database. This work included several stages. At first the original OMNI database was supplemented by certain key parameters of the solar wind that determine the type of the solar wind stream. The following parameters belong to this group: the plasma ratio β, thermal (NkT) and kinetic (mNV 2) pressures of the solar wind, the ratio T/T exp of measured and expected temperatures, gradients of the plasma velocity and density, and the magnetic field gradient. The results of visualization of basic plasma parameters that determine the character of the solar wind stream are presented on the website of the Space Research Institute, Moscow. Preliminary identification of basic types of the solar wind stream (FAST and SLOW streams, Heliospheric Current Sheet (HCS), Corotating Interaction Region (CIR), EJECTA (or Interplanetary Coronal Mass Ejections), Magnetic Cloud (MC), SHEATH (compression region before EJECTA/MC), rarified region RARE, and interplanetary shock wave IS) had been made with the help of a preliminary identification program using the preset threshold criteria for plasma and interplanetary magnetic field parameters. Final identification was done by comparison with the results of visual analysis of the solar wind data. In conclusion, histograms of distributions and statistical characteristics are presented for some parameters of various large-scale types of the solar wind.  相似文献   

6.
Several types of numerical models are used to analyze the interactions of the solar wind flow with Mercury’s magnetosphere, including kinetic models that determine magnetic and electric fields based on the spatial distribution of charges and currents, magnetohydrodynamic models that describe plasma as a conductive liquid, and hybrid models that describe ions kinetically in collisionless mode and represent electrons as a massless neutralizing liquid. The structure of resulting solutions is determined not only by the chosen set of equations that govern the behavior of plasma, but also by the initial and boundary conditions; i.e., their effects are not limited to the amount of computational work required to achieve a quasi-stationary solution. In this work, we have proposed using the magnetic field computed by the paraboloid model of Mercury’s magnetosphere as the initial condition for subsequent hybrid modeling. The results of the model have been compared to measurements performed by the Messenger spacecraft during a single crossing of the magnetosheath and the magnetosphere. The selected orbit lies in the terminator plane, which allows us to observe two crossings of the bow shock and the magnetopause. In our calculations, we have defined the initial parameters of the global magnetospheric current systems in a way that allows us to minimize paraboloid magnetic field deviation along the trajectory of the Messenger from the experimental data. We have shown that the optimal initial field parameters include setting the penetration of a partial interplanetary magnetic field into the magnetosphere with a penetration coefficient of 0.2.  相似文献   

7.
In this paper, we analyzed the thermal and energy characteristics of the plasma components observed during the magnetic dipolarizations in the near tail by the Cluster satellites. It was previously found that the first dipolarization the ratio of proton and electron temperatures (T p/T e) was ~6–7. At the time of the observation of the first dipolarization front T p/T e decreases by up to ~3–4. The minimum value T p/T e (~2.0) is observed behind the front during the turbulent dipolarization phase. Decreases in T p/T e observed at this time are associated with an increase in T e, whereas the proton temperature either decreases or remains unchanged. Decreases of the value T p/T e during the magnetic dipolarizations coincide with increase in wave activity in the wide frequency band up to electron gyrofrequency f ce. High-frequency modes can resonantly interact with electrons causing their heating. The acceleration of ions with different masses up to energies of several hundred kiloelectron-volts is also observed during dipolarizations. In this case, the index of the energy spectrum decreases (a fraction of energetic ions increases) during the enhancement of low-frequency electromagnetic fluctuations at frequencies that correspond to the gyrofrequency of this ion component. Thus, we can conclude that the processes of the interaction between waves and particles play an important role in increasing the energy of plasma particles during magnetic dipolarizations.  相似文献   

8.
An analysis of the electron density measurements (Ne) along the flyby trajectories over the high-latitude region of the Northern Hemisphere under winter conditions in 2014 and 2016 has shown that the main large-scale structure observed by Swarm satellites is the tongue of ionization (TOI). At the maximum of the solar cycle (F10.7 = 160), the average value of Ne in the TOI region at an altitude of 500 km was 8 × 104 cm–3. Two years later, at F10.7 = 100, Ne ~ 5 × 104 cm–3 and Ne ~2.5 × 104 cm–3 were observed at altitudes of 470 and 530 km, respectively. During the dominance of the azimuthal component of the interplanetary magnetic field, the TOI has been observed mainly on the dawn or dusk side depending on the sign of B y . Simultaneous observations of the convective plasma drift velocity in the polar cap show the transpolar flow drift to the dawn (By < 0) or dusk side (B y < 0). Observations and numerical simulation of the Ne distribution have confirmed the significant role of the electric field of the magnetospheric convection in the generation of large-scale irregularities in the polar ionosphere.  相似文献   

9.
The results of simultaneous analysis of plasma and magnetic field characteristics measured on the INTERBALL/Tail Probe, WIND and Geotail satellites on March 2, 1996, are presented. During these observations the INTERBALL/Tail Probe crossed the low-latitude boundary layer, and the WIND and Geotail satellites measured the solar wind’s and magnetosheath’s parameters, respectively. The plasma and magnetic field characteristics in these regions have been compared. The data of the Corall, Electron, and MIF instruments on the INTERBALL/Tail Probe satellite are analyzed. Fluctuations of the magnetic field components and plasma velocity in the solar wind and magnetosheath, measured onboard the WIND and Geotail satellites, are compared. The causes resulting in appearance of plasma jet flows in the low-latitude boundary layer are analyzed. The amplitude of magnetic field fluctuations in the magnetosheath for a studied magnetosphere boundary crossing is shown to exceed the magnetic field value below the magnetopause near the cusp. The possibility of local violation of pressure balance on the magnetopause is discussed, as well as penetration of magnetosheath plasma into the magnetosphere, as a result of magnetic field and plasma flux fluctuations in the magnetosheath.  相似文献   

10.
Quasi-biennial oscillations (QBO) of solar activity (T ≈ 1–4 years) are considered to be a variation of basic solar activity, associated with the solar dynamo process. They are transferred into interplanetary space by the open magnetic flux of the Sun, generating QBO in the intensity of cosmic rays (CR). This paper discusses the observational characteristics of QBO in CR and their relationship with QBO on the Sun and in the interplanetary medium. The delay time of QBO in CR relative to the solar and heliospheric magnetic field suggests that the formation of QBO in the open magnetic flux of the Sun occurs within 3–5 months. The paper considers the question of the prominent periodicity of CR (T = 1.6 years) that has prevailed in CR and in the heliospheric magnetic field for more than 10 years but was not stable over 60 years of observations. Distinctions in the characteristics of QBO and long-term variations of CR suggest features of the mechanism of their formation.  相似文献   

11.
We present the results of a cross-correlation analysis made on the basis of Spearman’s rank correlation method. The quantities to correlate are daily values of the fluence of energetic electrons at a geosynchronous orbit, intensities of ground and interplanetary ultra-low-frequency (ULF) oscillations in the Pc5 range, and parameters of the solar wind. The period under analysis is the 23rd cycle of solar activity, 1996–2006. Daily (from 6 h to 18 h of LT) magnetic data at two diametrically opposite observatories of the Intermagnet network are taken as ground-based measurements. The fluxes of electrons with energies higher than 2 MeV were measured by the geosynchronous GOES satellites. The data of magnetometers and plasma instruments installed on ACE and WIND spacecraft were used for analysis of the solar wind parameters and of the oscillations of the interplanetary magnetic field (IMF). Some results elucidating the role played by interplanetary ULF waves in the processes of generation of magneospheric oscillations and acceleration of energetic electrons are obtained. Among them are (i) high and stable correlation of ground ULF oscillations with waves in the solar wind; (ii) closer link of mean daily amplitudes of both interplanetary and ground oscillations with ‘tomorrow’ values of the solar wind velocity than with current values; and (iii) correlation of the intensity of ULF waves in the solar wind, normalized to the IMF magnitude, with fluxes of relativistic electrons in the magnetosphere.  相似文献   

12.
This paper discusses the errors in analyzing solar-terrestrial relationships, which result from either disregarding the types of interplanetary drivers in studying the magnetosphere response on their effect or from the incorrect identification of the type of these drivers. In particular, it has been shown that the absence of selection between the Sheath and ICME (the study of so-called CME-induced storms, i.e., magnetic storms generated by CME) leads to errors in the studies of interplanetary conditions of magnetic storm generation, because the statistical analysis has shown that, in the Sheath + ICME sequences, the largest number of storm onsets fell on the Sheath, and the largest number of storms maxima fell at the end of the Sheath and the beginning of the ICME. That is, the situation is observed most frequently when at least the larger part of the main phase of storm generation falls on the Sheath and, in reality, Sheath-induced storms are observed. In addition, we consider several cases in which magnetic storms were generated by corotating interaction regions, whereas the authors attribute them to CME.  相似文献   

13.
We have considered variations in fields and particle fluxes in the near-Earth plasma sheet on the THEMIS-D satellite together with the auroral dynamics in the satellite-conjugate ionospheric part during two substorm activations on December 19, 2014 with K p = 2. The satellite was at ~8.5RE and MLT = 21.8 in the outer region of captured energetic particles with isotropic ion fluxes near the convection boundary of electrons with an energy of ~10 keV. During substorm activations, the satellite recorded energetic particle injections and magnetic field oscillations with a period of ~90 s. In the satellite-conjugate ionospheric part, the activations were preceded by wavelike disturbances of auroral brightness along the southern azimuthal arc. In the expansion phase of activations, large-scale vortex structures appeared in the structure of auroras. The sudden enhancements of auroral activity (brightening of arcs, auroral breakup, and appearance of NS forms) coincided with moments of local magnetic field dipolarization and an increase in the amplitude Pi2 of pulsations of the Bz component of the magnetic field on the satellite. Approximately 30–50 s before these moments, the magnetosphere was characterized by an increased rate of plasma flow in the radial direction, which initiated the formation of plasma vortices. The auroral activation delays relative to the times when plasma vortices appear in the magnetosphere decreased with decreasing latitude of the satellite projection. The plasma vortices in the magnetosphere are assumed to be responsible for the observed auroral vortex structures and the manifestation of the hybrid vortex instability (or shear flow ballooning instability) that develops in the equatorial magnetospheric plane in the presence of a shear plasma flow in the region of strong pressure gradients in the Earthward direction.  相似文献   

14.
In the paper, the problem of designing interplanetary trajectories with several swing-bys and deep-space maneuvers is solved using the method of virtual trajectories developed by the authors. The algorithms for the calculation of both heliocentric and planetocentric trajectory arcs are presented, including the case of resonant trajectories. The results of applying the method of virtual trajectories to the problem of designing an interplanetary transfer to Jupiter are given and compared with the baseline trajectories for the Juno, Europa Clipper, and Laplace missions.  相似文献   

15.
On the basis of data of two networks of Canadian stations and also of extra- and intra-magnetospheric satellites, daytime long-period geomagnetic pulsations related to sudden impulses of the dynamic pressure of the solar wind (SW) are studied. The influence of SW parameters, interplanetary magnetic field (IMF), and geomagnetic activity on the propagation direction, polarization, and amplitude of pulsations is discussed. It is shown that at arrival front of the solar wind inhomogeneity at the place of its tangency, surface oscillations within the range of Pc5 geomagnetic pulsations are excited on the magnetopause, and they run away from the tangency point to the nighttime side with increasing amplitude and opposite polarization. The pulsation properties and the position of the running-away point are explained by the mechanism of their excitation on the magnetopause by the inclined front of the inhomogeneity and also by the Kelvin-Helmholtz instability. Increases in SW density observed ahead of the shock front were able to cause pulsation excitation onsets prior to the sudden storms commencement (SSC) front arrival. The observed increase in geomagnetic activity after SSC could change the direction of pulsation propagation from anti-sunward to sunward. The analysis of oscillation spectra made it possible to assume that pulsations with a frequency of the order of 2.5 mHz are of a global character, they are not related to oscillations in SW and are excited by sharp SSC fronts.  相似文献   

16.
The paper has studied the accuracy of the technique that allows the rotational motion of the Earth artificial satellites (AES) to be reconstructed based on the data of onboard measurements of angular velocity vectors and the strength of the Earth magnetic field (EMF). The technique is based on kinematic equations of the rotational motion of a rigid body. Both types of measurement data collected over some time interval have been processed jointly. The angular velocity measurements have been approximated using convenient formulas, which are substituted into the kinematic differential equations for the quaternion that specifies the transition from the body-fixed coordinate system of a satellite to the inertial coordinate system. Thus obtained equations represent a kinematic model of the rotational motion of a satellite. The solution of these equations, which approximate real motion, has been found by the least-square method from the condition of best fitting between the data of measurements of the EMF strength vector and its calculated values. The accuracy of the technique has been estimated by processing the data obtained from the board of the service module of the International Space Station (ISS). The reconstruction of station motion using the aforementioned technique has been compared with the telemetry data on the actual motion of the station. The technique has allowed us to reconstruct the station motion in the orbital orientation mode with a maximum error less than 0.6° and the turns with a maximal error of less than 1.2°.  相似文献   

17.
Many works have been devoted to studying the boundaries of the penetration of solar protons into the Earth’s magnetosphere. This work first considers the dynamics of not only the boundary, but the latitudinal profiles of penetration in general depending on the energy and local time of measurement according to the data of the low-altitude CORONAS-F satellite. When flying through the polar cap, the isotropic pitchangle distribution of protons leads to the equality of the recorded precipitating flux and the proton flux in the interplanetary space. Beginning at a particular latitude, the proton flux begins to drop and, over time, reaches the level of the background of galactic cosmic rays. The latitudinal profile measured in this manner on the night side reaches the bending point when the Larmor radius of the proton becomes comparable with the radius of the curvature of the line of force; after partial trapping, the flux of precipitating protons successively drops. The protons are transferred to the day side by the magnetic drift and, unlike the night profile, the character of the day profile depends on the configuration of the entire magnetosphere. The character of latitudinal profiles has been studied depending on the local time and energy of the particles, which enabled the features of the magnetosphere deformation to be evaluated at certain times of magnetic storms.  相似文献   

18.
An improved method of analysis of low-frequency wave processes in the interplanetary plasma using the results of multi-satellite measurements is presented. The new method develops the phase difference method and is distinguished by the fact that it allows one to analyze wavelengths several times shorter than the mean separation between spacecraft that perform the measurements. Its capabilities and the feasibility of analyzing events in different regions where spacecraft plasma measurements are undertaken are demonstrated using several examples of dispersion functions obtained by this method from the results of processing the magnetic field measurements on four spacecraft of the Cluster mission. The remarkable role played by ion-cyclotron oscillations in the outer magnetosphere cusp region is demonstrated, which manifests itself in wave generation and nonlinear structure formation.  相似文献   

19.
The precession of Saturn under the effect of the gravity of the Sun, Jupiter and planet’s satellites has been investigated. Saturn is considered to be an axisymmetric (A = B) solid body close to the dynamically spherical one. The orbits of Saturn and Jupiter are considered to be Keplerian ellipses in the inertial coordinate system. It has been shown that the entire set of small parameters of the problem can be reduced to two independent parameters. The averaged Hamiltonian function of the problem and the integrals of evolutionary equations are obtained disregarding the effect of satellites. Using the small parameter method, the expressions for the precession frequency and the nutation angle of the planet’s axis of rotation caused by the gravity of the Sun and Jupiter are obtained. Considering the planet with satellites as a whole preceding around the normal to the unmovable plane of Saturn’s orbit, the satellites effect on the Saturn rotation is taken into account via the corrections in the formula for the undisturbed precession frequency. The satellites are shown to have no effect on the nutation angle (in the framework of the accepted model), and the disturbances from Jupiter to make the main contribution to the nutation angle evolution. The effect of Jupiter on the nutation angle and the precession period is described with regard to the attraction of satellites.  相似文献   

20.
This work is a continuation of investigation [1] of the behavior of the solar wind’s and interplanetary magnetic field’s parameters near the onset of geomagnetic storms for various types of solar wind streams. The data of the OMNI base for the 1976–2000 period are used in the analysis. The types of solar wind streams were determined, and the times of beginning (onsets) of magnetic storms were distributed in solar wind types as follows: CIR (121 storms), Sheath (22 storms), MC (113 storms), and “uncertain type” (367 storms). The growth of variations (hourly standard deviations) of the density and IMF magnitude was observed 5–10 hours before the onset only in the Sheath. For the CIR-, Sheath-and MC-induced storms the dependence between the minimum of the IMF B z-component and the minimum of the D st -index, as well as the dependence between the electric field E y of solar wind and the minimum of the D st -index are steeper than those for the “uncertain” solar wind type. The steepest D st vs. B z dependence is observed in the Sheath, and the steepest D st vs. E y dependence is observed in the MC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号