首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
After a proposition from Russia to France, ESA agreed to see Soyuz rockets take off from French Guiana. From industry, to governments and agencies, many Russian and European actors were involved in this project and they all had different motives. It is therefore relevant to try to discern them so as to understand the rationale behind this cooperative endeavor. Soyuz's primary role is to consolidate Arianespace commercial position in the launching market and to bring activity and founding to a stagnating Russian space sector. With this decision Arianespace will have a full range of commercially available launchers with Soyuz completing the two European rockets Vega and Ariane V. But since Vega and Ariane must have the priority, there is a risk to see an insufficient launch rate for Soyuz, which would not satisfy the Russian partners. Commercial elements alone cannot justify the agreement. There is a larger strategic ambition behind. What is at stake is the future development of innovative launch systems. It is important for ESA to maintain an autonomous access to space and to maintain a dynamic and strong European propulsion industry. Cooperation with Russia can offer an increase of expandable rockets capabilities and can pave for the next generation of launch vehicles. Moreover, we can detect an interest in acquiring a system that has the potential for human space flight capacity. Finally, the decision to launch Soyuz from French Guiana was the conjunction of Russian and French national interests, which led to a complete redefinition of the relations between Europe and Russia. It is of strategic importance that we, Europeans, adapt to this evolution and understand the new place that Russia takes in our space sector.  相似文献   

2.
A series of major accidents - the explosion of the Space Shuttle Challenger, the destruction of Titan and Delta launchers, and failures of the Ariane rocket series - has led to a reexamination of Western space programmes. In the short term, all satellite launches have been delayed. This is not an insurmountable obstacle, although it will inevitably delay the first space-based tests of SDI hardware. The author outlines the growing gap between the immediate needs of organizations which launch satellites and the more uncertain ambitions of the ‘conquerors’ of space. The former are now bearing the costs of the latter, who are aiming at manned space flights and a human presence in space. In the longer term, these objectives have justifications other than simple industrial and commercial logic. The author suggests that an attempt should be made to reconcile immediate military and industrial needs with the human desire to overcome the ‘Icarus complex’ in the long-term future.  相似文献   

3.
Hubert Fabre   《Space Policy》2002,18(4):208-286
With the growth of commercial activities in outer space, insurers have found an emerging new market. Insurance policy for space satellites has been built chiefly in France and the USA and underwent various crises in the 1980s and 1990s. While the main risks have been more or less identified, their occurrence has shifted from the launch phase to the orbital period over the past few years. At the same time, the duration of insurance policies has been extended up to five years in certain cases, with an adverse effect on profits. The dual-use nature of most spacecraft also makes it difficult to obtain data necessary for the precise identification of risk. An analysis of the space insurance market and its contractual regime is presented, with the aim of identifying emerging trends, and the means by which insurers can develop this still immature sector without compromising their profits.  相似文献   

4.
A reusable launch vehicle could be developed early next century if the X-33 program is successful. Its development will be funded by industry, and the vehicle will be operated privately. A critical task is to assess the future market for such a vehicle. The total number of commercial payloads could range between 40 and 60 satellites per year, taking into account the market elasticity due to the launch price reduction. The RLV would face important competition from expendable launch vehicles. However, the RLV could capture two-thirds of this market, or 26–33 commercial payloads per year.  相似文献   

5.
With the new cryogenic upper stage ESC, the European heavy launcher Ariane 5+ is perfectly suited to the space market envisioned for the coming decade: flexible to cope with any payload and commercially attractive despite a fierce competition.Current Arianespace projections for the following years 2010–2020 indicate two major trends:
• satellites may still become larger and may require very different final orbits; today's market largely dominated by GEO may well evolve, influenced by LEO operations such as those linked to ISS or by constellations,
• to remain competitive, the launch cost has to be reduced.
The future generation of the European heavy launcher has therefore to focus on an ever increased flexibility with a drastic cost reduction.Two strategies are possible to achieve this double goal:
• reusable launchers, either partially or totally, may ease the access to space, limiting costly expendable stages; the assessment of their technical feasibility and financial viability is undergoing in Europe under the Future Launchers Technology Program (FLTP),
• expendable launchers, derived from the future Ariane 5+.
This second way started by CNES at the end of year 1999 is called the “Ariane 2010 initiative”.The main objectives are simultaneously an increase of 25% in performance and a reduction of 30% in launch cost wrt Ariane 5+.To achieve these very ambitious goals, numerous major modifications are studied:
• technical improvements :
◦ modifications of the Solid Rocket Boosters may consist in filament winding casing, increased loading, simplified casting, improved grain, simplified Thrust Vector Control, …
◦ evolution of the Vulcain engine leading to higher efficiency despite a simplified design, flow separation controlled nozzle extension, propellant management of the two cryogenic stages,
◦ simplified electrical system,
◦ increased standardization, for instance on flanged interfaces and manufacturing processes,
• operational improvements such as launch cycle simplification and standardization of the coupled analyses,
• organizational improvements such as a redistribution of responsibilities for the developments.
All these modifications will of course not be implemented together; the aim is to have a coherent catalogue of improvements in order to enable future choices depending on effective requirements. These basic elements will also be considered for the development of other launchers, in the small or medium size range.  相似文献   

6.
The feasibility of building commercial spaceports is being actively investigated in several countries. Potential benefits include boosting economic development and assisting the commercial launch industry. This report finds, however, that commercial spaceport development will probably not be capable of generating a large enough return on investment to attract private sector involvement without significant government assistance. It is also unlikely that the market for large launch vehicles will support spaceport development; however, small satellites may offer better prospects.  相似文献   

7.
Satellites have been rightly described as the lifeblood of the entire space industry and the number of satellites ordered or launched per year is an important defining metric of the industry's level of activity, such that trends and variability in this volume have significant strategic impact on the space industry. Over the past 40+ years, hundreds of satellites have been launched every year. Thus an important dataset is available for time series analysis and identification of trends and cycles in the various markets of the space industry. This article reports findings of a study for which we collected data on over 6000 satellites launched since 1960 on a yearly basis. We grouped the satellites into three broad categories – defense and intelligence, science, and commercial satellites – and identified and discussed the main trends and cyclical patterns for each of these. Institutional customers (defense and intelligence, and science) accounted for over two-thirds of all satellites launched within our time period (1960–2008), and, in the 1960s and 1970s, they accounted for 90% and 73.5%, respectively. A fair conclusion from this data is that the space industry was enabled by, and grew because of the institutional customers, not commercial market forces. However, when the launch data is examined more closely, a growing influence of the commercial sector is noticeable. Over the past two decades communication satellites accounted for roughly half of all launches, thus reflecting an important shift in the space industry in which the commercial sector is playing an equal role (on a launch volume basis) to that of the institutional market. Cyclical patterns in the satellite launch volume over the past decade are separately discussed before we sum up with a conclusion.  相似文献   

8.
The gradual commercial utilization and application of the results of government-led space development programmes is a natural development. In Japan private sector involvement goes further than this because the government budget for space development is very limited. To remain competitive in an increasingly international market Japan now needs to develop a partnership between government and private enterprise to construct a system and structure that will directly benefit the public, otherwise the necessary support for space development will not be attained.  相似文献   

9.
Robert A. Goehlich   《Space Policy》2005,21(4):293-306
It is important for any new launch system to develop a successful pricing strategy and to optimize launch system parameters to receive a high economic profit. A question arises, what will happen when an existing suborbital flight market (the first likely to be established in space) is interfered with by a new established orbital flight market for space tourism. There is a risk that the suborbital space tourism market could be almost instantly displaced when a product capable of reaching orbit was introduced. This is best discussed using the following three cases whose results are presented in this paper. Case A presents a ticket pricing strategy for a suborbital and orbital vehicle if the two vehicles do not compete in the same market. Case B shows the necessary ticket pricing strategy for a suborbital vehicle if there is competition from an orbital flight operator. However, the suborbital vehicle would not be able to keep up with a drop in ticket prices due to its obsolete characteristics. Thus, the suborbital vehicle would be forced to stop operation in the year when flight costs became higher than flight receipts as shown in case C.  相似文献   

10.
Since the 1980s a trend has emerged to contain the cost of space missions, which has favored trials in the construction and launch of small satellites. This effort has considerably reduced the cost of the satellites because the construction process uses both traditional components and important technological innovations. There have also been market openings for small satellites, both within the telecommunication sector and for scientific missions and those related to Earth observation. This paper contains the results of a survey of the largest manufacturers of small satellites in Europe and investigates how far (if at all) they have changed the structure of the European space industry. It finds that, through the acquisition of small satellite manufacturers, traditional large companies operating in the field of space in Europe have secured for themselves important technological innovations and market opportunities, while maintaining their oligopolistic position.  相似文献   

11.
Small satellites have captured a continuously increasing share of the market in the fields of science, technology and recently also in the telecommunications and Earth observation areas. User requirements and market opportunities for space based satellite systems for Earth observation products have grown substantially in the past decade. Criteria for the utilization of different classes of satellite systems (small and large) and analogies to developments in other areas, e.g. the telecommunications field are discussed. The end to end character of service and product oriented systems as key criteria for market success in the scientific, applications and commercial areas is underlined. Recent developments in the global change, the Earth observation applications and commercial sectors are reviewed and compared. Opportunities for small satellites in the field are related to technology advancements, cost reduction options, and progress in the state of the art in system design.  相似文献   

12.
K. Anflo  R. Mllerberg 《Acta Astronautica》2009,65(9-10):1238-1249
The concept of a storable liquid monopropellant blend for space applications based on ammonium dinitramide (ADN) was invented in 1997, within a co-operation between the Swedish Space Corporation (SSC) and the Swedish Defense Research Agency (FOI). The objective was to develop a propellant which has higher performance and is safer than hydrazine. The work has been performed under contract from the Swedish National Space Board and ESA. The progress of the development has been presented in several papers since 2000.ECAPS, a subsidiary of the Swedish Space Corporation was established in 2000 with the aim to develop and market the novel “high performance green propellant” (HPGP) technology for space applications. The new technology is based on several innovations and patents w.r.t. propellant formulation and thruster design, including a high temperature resistant catalyst and thrust chamber.The first flight demonstration of the HPGP propulsion system will be performed on PRISMA. PRISMA is an international technology demonstration program with Swedish Space Corporation as the Prime Contractor.This paper describes the performance, characteristics, design and verification of the HPGP propulsion system for PRISMA. Compatibility issues related to using a new propellant with COTS components is also discussed. The PRISMA mission includes two satellites in LEO orbit were the focus is on rendezvous and formation flying. One of the satellites will act as a “target” and the main spacecraft performs rendezvous and formation flying maneuvers, where the ECAPS HPGP propulsion system will provide delta-V capability.The PRISMA CDR was held in January 2007. Integration of the flight propulsion system is about to be finalized.The flight opportunity on PRISMA represents a unique opportunity to demonstrate the HPGP propulsion system in space, and thus take a significant step towards its use in future space applications. The launch of PRISMA scheduled to 2009.  相似文献   

13.
The growth in NASA's ground network complexity and cost triggered a search for an alternative. Through a lease service contract, Western Union will provide to NASA 10 years of space communications services with a Tracking and Data Relay Satellite System (TDRSS). A constellation of four operating satellites in geostationary orbit and a single ground terminal will provide complete tracking, telemetry and command service for all of NASA's Earth orbital satellites below an altitude of 12,000 km. The system is shared: two satellites will be dedicated to NASA service; a third will provide backup as a shared spare; the fourth satellite will be dedicated to Western Union's Advanced Westar commercial service. Western Union will operate the ground terminal and provide operational satellite control. NASA's Network Control Center will provide the focal point for scheduling user services and controlling the interface between TDRSS and the rest of the NASA communications network, project control centers and data processing facilities. TDRSS single access user spacecraft data systems should be designed for efficient time shared data relay support. Reimbursement policy and rate structure for non-NASA users are currently being developed.  相似文献   

14.
《Acta Astronautica》2001,48(5-12):461-468
We have been studying a large membrane space structure named “Furoshiki Satellite,” as a promising candidate of a future space system for those missions requiring large area in space such as solar power generation, a large communication antenna, or a large radiator. This membrane is folded in a very small volume during launch and is deployed and controlled by a set of several satellites at its corners or using centrifugal force generated by rotating the central satellite. It is expected that such a structure will reduce the weight per area of the space structure and, if the control technology is properly applied, it can be efficiently folded during launch and easily deployed after release. This paper shows the concept of Furoshiki Satellite, its applications, and its dynamics on orbit and how to control it. A nano-satellite project on demonstrate the concept of Furoshiki Satellite will also be described briefly.  相似文献   

15.
The increasingly important role of China and Japan in international space activities can be seen as a threat to the two great space-exporting powers, the USA and Europe. China is already a competitor on the satellite launch market, and will soon be able to market satellites which are simpler and cheaper than those offered by Western industry. Japan is making steady progress towards autonomy in all fields of space technology. This article details the space experience of China and Japan. They are following different paths but both will have a strong presence in the cosmos by the year 2000.  相似文献   

16.
Experience with the Shuttle and free-flying satellites as technology test beds has shown the feasibility and desirability of using space assets as facilities for technology development. Thus, by the time the space station era arrives, technologists will be ready for an accessible engineering facility in space. Along with the scientific and commercial space development communities, the technology development community has been participating in defining requirements for this in-space facility. As the 21st century is approached, it is expected that many flights to the Space Station Freedom will carry one or more RT&E experiments. The experiments are likely to utilize both the pressurized volume, and the external payload attachment facilities. Based on the success of instrumenting the Shuttle itself to obtain ascent and descent aerothermodynamic data a unique, but extremely important, class of experiments will use the space station itself as an experimental vehicle.  相似文献   

17.
《Acta Astronautica》2001,48(5-12):503-516
In recent years, the use of tethers has been proposed for reduction of space debris either through momentum transfer or use of electrodynamic effects. Tethers have been shown to at least theoretically allow for quick, elegant and cost-effective deorbit of defunct satellites or spent stages. On the other hand, the large risk that tethers themselves may pose to other satellites in orbit has been recognized as well. The large collision area of tethers, combined with operational hazards and meteoroid risk may result in a large orbital exposure. For example, in 1997, the ESA/Dutch 35-km tether deployment of YES from TEAMSAT was inhibited after an analysis of the collision risk for the case the tether operation would fail. The question rises how these two points of view compare to eachother. This paper intends to highlight a representative selection of the proposed tether applications while taking into account the added risks caused by the tethers themselves.Typical applications from recent literature will be briefly described, such as an Ariane 502 spent stage re-entry from GTO and the concept of deboost of defunct satellites by interaction of a conductive tether with the Earth magnetic field.Mass savings of the tethered sytems versus conventional equivalents will be evaluated.Based on a crude risk analysis, involving elements such as mission complexity, dynamic stability, meteoroid risk and orbital life time, a general outline of limiting factors can be given for the various applications. Special attention is reserved for implementation of mechanisms that help reduce this tether risk, such as the DUtether (Tether Degradable by Ultraviolet), utilization of airdrag and solar pressure, the effect of residual current in bare tethers, tether retrieval etc.It is proposed how a net tether-induced mitigation can be compared to that of conventional alternatives, i.e. deboost by rocket engine or a completely passive approach.This comparison is put in the perspective of an ever-increasing occupation of the space environment.It is concluded that tethers can in fact help mitigate the debris risk and that for each application a useful niche can be defined. It is argued that eliminating pollution directly after use of the precious resource of space is not only good custom, but also an important way to make the risk of debris controllable and independent of future trends. Although tethers may have large exposure in terms of area-time product, they deliver a quick cleaning service that may be appreciated by the future users of space.  相似文献   

18.
Since the early 1990s the USA has maintained export control sanctions against Chinese international commercial satellite launch services. In 1998 these sanctions were further strengthened, resulting in a de facto international embargo that is premised on ITAR export licenses. Since 1998 this de facto embargo has effectively prohibited China from launching Western commercial satellites of a sophisticated technological standard. Today, European commercial satellite manufacturers are positioned to fully benefit from ITAR-free technology investments, gaining access to Chinese launch services for the launch of commercial telecommunication satellites that are technologically comparable to US satellites. This article examines the policy implications for the USA in light of EU regulatory divergence and the impending return of China to the international commercial launch services market.  相似文献   

19.
《Acta Astronautica》2013,82(2):600-609
A significant challenge for the new field of space architecture is the dearth of project opportunities. Yet every year more young professionals express interest to enter the field. This paper derives projections that bound the number, type, and range of global development opportunities that may be reasonably expected over the next few decades for human space flight (HSF) systems so those interested in the field can benchmark their goals. Four categories of HSF activity are described: human Exploration of solar system bodies; human Servicing of space-based assets; large-scale development of space Resources; and Breakout of self-sustaining human societies into the solar system. A progressive sequence of capabilities for each category starts with its earliest feasible missions and leads toward its full expression. The four sequences are compared in scale, distance from Earth, and readiness. Scenarios hybridize the most synergistic features from the four sequences for comparison to status quo, government-funded HSF program plans. Finally qualitative, decadal, order-of-magnitude estimates are derived for system development needs, and hence opportunities for space architects. Government investment towards human planetary exploration is the weakest generator of space architecture work. Conversely, the strongest generator is a combination of three market drivers: (1) commercial passenger travel in low Earth orbit; (2) in parallel, government extension of HSF capability to GEO; both followed by (3) scale-up demonstration of end-to-end solar power satellites in GEO. The rich end of this scale affords space architecture opportunities which are more diverse, complex, large-scale, and sociologically challenging than traditional exploration vehicle cabins and habitats.  相似文献   

20.
Both commercial organizations and government agencies invest in spacecraft technology programmes aimed at increasing the performance of communications satellites. Government agencies also make policy decisions which may affect communications satellite business ventures. This article describes an economic evaluation and planning tool which has been developed to assess the impact of various policies on typical fixed satellite service business ventures. The methodology is based upon a stochastic financial simulation model (DOMSAT II) which allows for consideration of reliability and various market, performance and cost uncertainties. Results of the assessment of NASA on-orbit and space power technology programmes are presented, as are results of insurance v self insurance decisions and the choice of transportation system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号