首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
热障涂层(TBCs)广泛应用于先进航空发动机热端部件,有效延长了发动机热端部件的服役寿命,成为先进航空发动机必不可少的热防护材料。但在服役过程中一些大气沉积物CMAS加热后变为熔融体吸附在热障涂层表面,并沿着孔隙和裂纹等缺陷渗透至涂层内部,诱导涂层过早失效。采用等离子–物理气相沉积技术(PS–PVD)制备YSZ热障涂层,利用XRD、SEM等表征手段,对不同腐蚀时间的涂层物相成分、微观结构进行了表征。研究结果表明,YSZ涂层在1250℃下经过CMAS腐蚀后发生了相变;随着腐蚀时间的增加,CMAS沉积物会沿着热障涂层类柱状晶间隙渗透至内部,导致涂层结构出现疏松,并且在陶瓷层上部区域出现了类柱状晶断裂现象,涂层宏观表现为部分陶瓷层剥落;腐蚀8 h后陶瓷层部分区域出现了类柱状晶从粘结层上整体剥离;CMAS渗透深度随腐蚀时间的增加不断加大,在腐蚀3 h内其渗透速度相对较快,腐蚀3 h以后其渗透速度会相对变得缓慢。  相似文献   

2.
热障涂层在CMAS环境下的失效与防护   总被引:1,自引:0,他引:1  
随着航空发动机工作温度的提升,一种主要化学成分为CaO-MgO-Al_2O_3-SiO_2(简称CMAS)的环境沉积物对发动机叶片热障涂层(thermal barrier coatings,TBCs)的危害越来越严重,一方面导致叶片表面气膜冷却孔堵塞,降低冷效,改变叶片温度场和应力场;另一方面,引起叶片TBCs服役寿命大幅度下降。如何解决叶片TBCs表面CMAS吸附和渗透的问题对于高性能航空发动机的研制非常关键,也是目前TBCs研究领域的难点。本文重点阐述了TBCs在CMAS环境下的热化学、密实、相变等失效机理,并简述了国际上目前一些如涂层组织结构优化、添加阻渗层和牺牲层等解决CMAS问题的方法。  相似文献   

3.
正热障涂层,简称TBCs,是将耐高温、低导热、抗腐蚀的陶瓷材料以涂层的方式涂覆在合金表面、以降低高温服役环境下合金表面温度的一种热防护技术。热障涂层应用于燃气发动机涡轮叶片,可以显著提高发动机的工作效率和推力,同时可降低叶片合金的工作温度,从而大幅度提高发动机的寿命和可靠性,是先进航空发动机不可缺少的一项关键技术。有关热障涂层材料、制备科学以及表征等方面的研究一直是国际上表面与界面科学领域的研究热点,受到材料、物理、化学、力学、传热学等多领域科学家的高度关注。自20世纪90年代开始,美  相似文献   

4.
热障涂层(TBCs)技术是降低燃气轮机热端部件表面温度、防止高温腐蚀、实现更高推重比的有效途径,但如果涂层失效,将会影响航空发动机使用的安全性。本文首先介绍了 TBCs 的成分结构,其次总结了冲蚀与外物损伤、烧结氧化、腐蚀三种常见的热障涂层破坏形式,然后阐述了国内外现阶段对破损或失效涂层的修复及再制造方法,最后针对如何抑制裂纹形成和扩展,提高热障涂层可靠性的问题进行了展望。  相似文献   

5.
电子束物理气相沉积热障涂层的研究   总被引:2,自引:0,他引:2  
70年代以来,陶瓷热障涂层技术被广泛用于保护航空发动机的热端部件。热障涂层具有减少热流、降低热端部件工作温度(或提高发动机工作温度)、防止腐蚀和磨损、提高效率、节约燃料、延长零件工作寿命的功能。采用电子束物理气相沉积制备的热障涂层具有更高的抗氧化腐蚀剥落能力、界面结合力及热循环寿命。  相似文献   

6.
航空发动机涡轮叶片热障涂层应用的关键技术和问题   总被引:1,自引:0,他引:1  
热障涂层是提高涡轮叶片可靠性和服役寿命的关键技术。从热障涂层的粘结层与涡轮叶片高温合金基体的匹配性、CMAS(一种基于CaO、MgO、Al2O3和Si O2等多种氧化物构成的环境沉积物)形成及其对热障涂层的损伤和相应的防护、叶片热障涂层厚度分布的过程控制、热障涂层制备过程中气膜孔缩孔、热障涂层的在线无损检测及涂层返修以满足涡轮叶片全寿命周期需求等方面论述了航空发动机涡轮叶片热障涂层工程应用技术和需要解决的实际问题。  相似文献   

7.
热障涂层是航空发动机热端部件的重要功能材料,其强度与寿命分析技术是热障涂层应用基础研究的重点。涂层的提前失效将使金属基体暴露在高温燃气环境中,加速材料性能的退化,严重影响飞行安全。合理的强度评判标准以及寿命预测模型可以有效减小服役过程中热障涂层失效,提高发动机可靠性。介绍了热障涂层的损伤机理、寿命分析技术的发展现状,展望了航空发动机热障涂层寿命分析技术的发展趋势。  相似文献   

8.
电子束物理气相沉积热障涂层寿命预测模型   总被引:1,自引:0,他引:1       下载免费PDF全文
为了准确预测热障涂层(TBCs)的剥落寿命,把涂层使用过程中所存在的潜在危险减到最低,建立精确的热障涂层寿命预测模型具有十分重要意义。本文介绍了一种电子束物理气相沉积(EB-PVD)技术制备的热障涂层的寿命预测模型。该模型是通过对EB-PVD热障涂层陶瓷的物理和力学性能、结合强度的测定,热生长氧化层(TGO)生长动力学的研究以及热循环剥落寿命数据的定量研究而建立的一个TBCs系统的非线性寿命预测模型。从涂层实际寿命与模型预测寿命对比发现,该模型预测的涂层寿命与涂层的实际寿命相吻合。  相似文献   

9.
新型高温/超高温热障涂层及制备技术研究进展   总被引:3,自引:0,他引:3  
简单介绍了先进航空发动机高温/超高温热障涂层(TBCs)的研究背景、意义和现状;简述了近年来国际上在新一代超高温TBCs方面的研究进展。重点介绍了近年来北京航空航天大学在新型高温/超高温TBCs方面的研究成果,包括新型超高温、高隔热陶瓷隔热层材料,1 150℃以上新型抗高温氧化金属粘结层材料,以及电子束物理气相沉积(EB-PVD)、等离子体激活EB-PVD(PA EB-PVD)和等离子物理气相沉积(PS-PVD)等新型制备工艺。最后对TBCs在未来高性能航空发动机上的应用及发展趋势进行了展望。  相似文献   

10.
新型热障涂层陶瓷隔热层材料   总被引:2,自引:0,他引:2  
热障涂层(thermal barrier coatings,TBCs)是先进燃气涡轮发动机核心热端部件高压涡轮叶片的关键技术,已经在航空发动机和地面燃气轮机上获得成功应用的热障涂层陶瓷隔热层材料为氧化钇部分稳定氧化锆(YSZ)。由于受高温稳定性、隔热性能等的局限,YSZ已不能满足下一代航空发动机的发展要求。本文介绍了近年来国内外在多元氧化物掺杂氧化锆、A_2B_2O_7型烧绿石或萤石化合物、磁铅石型六铝酸盐化合物、石榴石型化合物、钙钛矿结构化合物和其他新型氧化物陶瓷等先进超高温热障涂层陶瓷材料方面的研究进展,并展望了今后超高温热障涂层陶瓷材料所面临的挑战和发展动向。  相似文献   

11.
热障涂层(Thermal Barrier Coatings,TBCs)是推进超高速飞行器与先进航空发动机发展的关键技术。目前最常用的热障涂层材料是氧化钇稳定氧化锆(YSZ),但是由于其存在高温相变会产生体积差这一致命缺陷,已不能满足下一代发动机的发展需求。故而,开发新一代热障涂层已势在必行。经试验证明,采用固相法所制备的稀土钽酸盐致密块体具有更加优异的热物理性能和机械性能:极低的高温热导率(1.1~1.3W/(m·K),1000℃),相比YSZ系列热导率值下降了50%;更大的降温梯度(300~500℃);基于高温铁弹增韧机制的良好断裂韧性。此外,稀土钽酸盐作为非氧离子缺陷型热导化合物,是一种氧离子传输的绝缘体,能够有效阻止热氧化物(Thermal Growth Oxidies,TGO)层的生长,大大延长热障涂层的热循环使用寿命,有望成为新一代应用于超高速飞行器和航空发动机的热障涂层材料。  相似文献   

12.
精确测量涡轮叶片表面热障涂层温度对航空发动机和地面燃气轮机设计和研制具有极其重要的意义。近年来,基于热像磷光材料磷光特性的热障传感涂层在线测温技术与热历史磷光涂层离线测温技术得到了迅猛发展。前者通过在线测量高温下磷光信号来获取实时温度信息,后者通过离线测量经高温服役后的磷光材料不可逆磷光信号变化来获取服役温度信息。这两项技术都适用于高温、高腐蚀环境下热障涂层非干涉、非接触式和高精度温度测量,具有广阔的应用前景。从热障涂层在线/离线测温原理与方法、磷光材料与制备及应用3个方面详细介绍了热障涂层在线/离线测温技术的研究现状与技术特点,并对这两种技术的发展进行了展望。  相似文献   

13.
《航空制造技术》2020,(5):103-103
选题背景现代航空发动机提高涡轮前进气温度,除了采用单晶高温合金,双层壁冷却技术、气膜冷却等冷却技术之外,还有一个重要技术就是热障涂层。热障涂层可以显著降低涡轮叶片的表面温度,大幅度延长叶片的工作寿命,提高发动机的推力和效率,因此热障涂层与叶片冷却设计技术、单晶高温合金材料技术并列,是先进航空发动机叶片的三大核心技术之一。  相似文献   

14.
热障涂层在航空发动机涡轮叶片上的应用   总被引:1,自引:0,他引:1  
本文分析了热障涂层(TBCs)技术应用于发动机涡轮叶片上的必要性,介绍了热障涂层在国外发动机涡轮叶片上的应用情况及国内的发展状况,同时还比较了等离子喷涂和电子束物理气相沉积两种主要制备方法的优缺点,最后展望了热障涂层的应用前景.  相似文献   

15.
电子束物理气相沉积(EB–PVD)是航空发动机涡轮叶片涂层的先进制备技术。EB–PVD的工艺稳定性对于叶片涂层质量及批产一致性至关重要。本研究针对我国先进航空发动机对高性能热障涂层的应用需求,研制出了EB–PVD自动蒸发沉积技术和叶片多自由度涂层沉积技术。工艺验证和性能测试结果表明,所研制的自动蒸发沉积技术可使涂层过程靶材消耗均匀稳定,涂层质量良好;双坩埚结构配置可进一步满足新一代超高温双层结构热障涂层工艺需求。所研制的多自由度沉积技术有助于提升叶片涂层厚度均匀性,改善缘板涂层质量,实现涂层厚度和微观组织的精确调控。利用上述工艺制备的涂层试片抗燃气热冲击性能优异,模拟叶片缘板位置涂层寿命与模拟叶身位置涂层寿命相近。  相似文献   

16.
介绍了氧化锆热障涂层(TBCs)的特性、制备方法及其特点,分析了TBCs在航空发动机上的应用情况,并对TBCs技术的发展做出了展望。  相似文献   

17.
随着航空发动机使用环境要求不断提升,现有热障涂层技术在热物理性能和热稳定方面难以满足现 代航空发动机的发展需求。本文介绍了热障涂层制备工艺,热障涂层材料的设计和选择,以及热障涂层的失效 机理;归纳了热障涂层新型材料在材料热物理性能及材料稳定性方面的研究进展。指出了后续航空发动机新 型热障涂层的发展趋势,为后续研究提供了方向。  相似文献   

18.
热障涂层在涡轮叶片应用中的热防护有效性   总被引:1,自引:1,他引:0  
朱剑琴  赵超凡  邱璐  陶智 《航空动力学报》2019,34(11):2503-2508
建立了含热障涂层的涡轮叶片简化传热模型,通过理论推导建立了热障涂层的有效性判据,并基于此进行了热防护有效性分析。理论分析与数值实验表明:由热障涂层带来的复合传热表面传热系数的变化会显著影响热障涂层的热防护效果;在发动机典型工况下,对于处于高温区的高压涡轮叶片前缘处,热障涂层引起的复合传热表面传热系数变化率最大值的范围为1.25%~10.83%以满足热防护有效性要求。在工程中应特别注意由于热障涂层的应用带来的复合传热表面传热系数的变化,否则会导致热防护失效,甚至产生反效果。   相似文献   

19.
传统的航空发动机热障涂层主要关注点是其热绝缘特性及可靠性的研究,并且已经形成了一整套基于YSZ的热障涂层技术,但是缺乏热障涂层高温导电性能的研究。另一方面,基于对航空发动机智能化的要求,需要在涡轮叶片表面制造电学器件(传感器),所以有必要对航空发动机热障涂层的电学性能进行相关的研究。研究了YSZ热障涂层在高温下的电学性能,提出了能提高其高温电绝缘性能的技术方法:可以对YSZ热障涂层喷涂配方进行改良。试验证明,在涂层中加入一定含量的氧化铝可以把热障涂层的高温电绝缘性能提高4个量级,可以满足在涡轮叶片热障涂层之上制作微传感器的实际工程需要。此外,利用计算机仿真技术对高温环境下的热障涂层复合结构进行了电学性能的综合分析,分析的结果证明,在传感器/热障涂层/涡轮叶片基底的复合结构当中,热障涂层表面的传感器电流的高温特性是各层材料的导电性、传感器与热障涂层的结构与尺寸的综合函数。  相似文献   

20.
热障涂层是涡轮叶片高温防护关键技术,具有典型的层状结构特征,且热障涂层服役过程中高温氧化产生热生长氧化物结构,迫切需要利用三维成像方法无损探知热障涂层内部结构。由于计算机断层成像技术能提供三维立体图像,准确再现物体内部三维结构,是热障涂层层状结构最佳分析手段之一,在热障涂层喷涂质量评价和高温氧化监测方面具有很好的前景。重点介绍了国内外在热障涂层微米CT成像、同步辐射CT成像、聚焦离子束–扫描电镜(FIB–SEM)三维成像及热应力有限元仿真方面的进展。最后指出了热障涂层无损检测可能的发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号