首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 240 毫秒
1.
运输机模型高速风洞试验支撑形式及支撑干扰研究   总被引:1,自引:0,他引:1  
选择合适的支撑形式并扣除支撑干扰是运输机模型高速风洞试验技术的关键问题。采用理论计算、测力和测压试验等手段研究了不同偏度尾支撑、叶片腹支撑对运输类飞机气动特性的支撑干扰。采用叶片腹支撑分别与0°、5°、15°、30°假尾支撑组合试验及垂尾支撑分别与0°、5°、15°、30°假尾支撑组合试验获得相应尾支撑的干扰特性,采用0°尾支撑与假叶片腹支撑组合试验获得叶片腹支撑的干扰特性。研究表明:0°/5°尾支撑修正支撑干扰后的试验结果与前位叶片腹支撑修正支撑干扰后的试验结果一致性较好,0°/5°尾支撑作为主支撑、前位叶片腹支撑作为辅助支撑是运输类飞机高速风洞试验较好的一种支撑系统,采用该支撑获得的试验结果是可信的;由于很难准确获得大偏度尾支撑的支撑干扰,大偏度(例如30°)尾支撑修正支撑干扰后的试验结果误差较大,选择大偏度尾支撑作为主支撑进行运输类飞机高速风洞试验是不合适的。  相似文献   

2.
文章导读     
<正>运输机模型高速风洞试验支撑形式及支撑干扰研究(721-727,doi:10.7638/kqdlxxb-2014.0064)杨贤文,刘昕为研究尾支撑和腹支撑的干扰特性,进行了0°、5°、15°、30°假尾支撑与叶片腹支撑/垂尾支撑的组合试验。采用0°尾支撑与假叶片腹支撑的组合试验获得叶片腹支撑的干扰特性。研究得到:0°/5°尾支撑与前位叶片腹支撑修正支撑干扰后的试验结果一致性较好,表明0°/5°尾支撑作为主支撑、前位叶片腹支撑作为辅助支撑是运输类飞机高速风洞试验较好的一种支撑系统;由于很难准确获得大偏度尾支撑的支撑干扰,选择大偏度(例如30°)尾支撑作为主支撑进行运输类飞机高速风洞试验是不合适的。  相似文献   

3.
对某大飞机布局风洞实验尾支撑干扰开展了数值模拟和实验研究,发展的数值方法计算结果与风洞实验结果有很好的一致性。对于类似构型的飞机,在迎角-2°~6°范围,可认为尾支撑干扰量随迎角呈线性变化,采用前位叶片支撑作为辅助支撑带来的二次干扰量可以忽略,新型双天平辅助支撑系统试验进一步验证了这一结果;尾支撑对机身、尾翼、机翼等部件的绕流都有影响,干扰量随构型而变,对阻力、力矩影响较大,且随Ma数变化,因此不同构型实验数据需要单独修正。所发展的带风洞支撑系统的数值模拟软件能够满足工程应用要求,可用于支撑干扰修正研究以及风洞实验支撑系统优化设计。  相似文献   

4.
为提高大型飞机风洞试验时的支撑系统刚度、降低支撑气动干扰以及实现真实船尾后体流动的模拟,在2.4米跨声速风洞中建立了条带悬挂支撑试验系统.主要包括专用试验段、条带支撑机构、控制系统、天平设备、标模及半弯刀尾支撑机构研制等六部分.系统研制成功后,在2.4米跨声速风洞中开展了流场调试及标模试验,分别采用风洞试验和数值模拟方法获取了条带悬支撑的干扰量.在某飞机高速风洞试验中,采用条带支撑系统,获得了飞机模型的气动特性,并与尾撑试验结果进行了对比.以条带支撑为辅助支撑,得到了尾支撑干扰量,与腹撑试验结果进行了对比.研究结果表明,条带悬挂支撑系统具备型号应用条件,同期重复性精度高,在-2°≤α≤2°范围内,重复性精度满足σCL≤0.0012,σCD≤0.00013,σCm≤0.0005,标模试验结果与国外风洞试验相关性较好;条带支撑干扰试验结果与数值模拟吻合较好,低亚声速时支撑干扰量较小,在-4°≤α≤10°范围内,M=0.6时的支撑干扰量ΔCL≤0.005,ΔCD≤0.0008,ΔCm≤0.005.  相似文献   

5.
为了合理选择模型支撑形式,在高速风洞进行了直支杆与Z 支杆两种支撑形式的支架干扰研究试验。结果发现,支架对模型带来不可忽略的干扰量,两种支撑形式对升力、阻力与力矩的干扰量随迎角基本上呈线性变化;直支杆由于距离模型较近,对模型尾部带来较大的影响。而Z 支杆对模型尾部影响较小,在全机与无尾两种状态下的干扰量较为相近。  相似文献   

6.
分析了大型飞机在高速风洞中常用的支撑形式(尾支撑、腹支撑和条带支撑)的干扰特性,比较了尾支撑干扰试验中辅助支撑装置的二次干扰量,为大型飞机高速风洞试验的支撑选择提供了参考依据。以Ty-154标模为研究对象,基于结构嵌套网格,通过数值求解Ty-154标模有、无支撑的气动特性获取了相应的支撑干扰量,分析了支撑干扰产生的机理。通过数值模拟尾支撑、腹支撑和条带支撑的组合状态,探索了辅助支撑装置的二次干扰影响。结果表明:数值模拟与试验结果吻合较好,研究结果可靠性高;尾支撑对试验模型的阻力和俯仰力矩系数干扰较大,条带支撑对试验模型的升阻特性干扰较小,腹支撑对试验模型的阻力系数干扰较大,对俯仰力矩系数干扰较小;Ma0.9时三种支撑形式的干扰量均迅速增加,腹支撑形式的干扰量增加最为剧烈;在尾支撑干扰修正试验中,腹支撑与条带支撑引起的二次干扰量均很小,工程应用可忽略。  相似文献   

7.
在归纳、分析国内外近30年大飞机全模试验技术研究的基础上,提出了选择支撑的原则,扣除支撑干扰的关键。建立了一套完整的试验技术、支撑干扰修正方法。该支撑系统新疑独特,能广泛用于不同布局的大飞机、横向试验,支撑干扰小并可以有效扣除,可连续改变攻角,运转灵活、装拆方便,支撑强度、刚度良好,安全可靠。可推广应用于单独尾支撑不适宜的场合;也可应用于其它高速风洞中。  相似文献   

8.
为了进一步提高低速大迎角试验数据的质量,掌握支架干扰规律,对Ф3.2m风洞张线尾撑系统进行了支架干扰试验研究。研究结果表明:张线尾撑装置的横梁对飞机纵向的远场干扰量较小,大迎角区域内尾支杆对飞机纵向的近场干扰量较大;迎角小于15°范围内,支架使飞机偏航力矩系数减小、滚转力矩系数增大,随侧滑角增大支架干扰量增大;去掉立尾后尾支杆对俯仰力矩的干扰明显减小。  相似文献   

9.
高速风洞支架干扰数值修正研究   总被引:2,自引:0,他引:2  
提出了一种计算高速风洞支架系统对飞行器模拟纵向气动力干扰量的数值计算方法,从跨声速全位势积分方程出发,编制了适用于飞行器全机模型及其带支架情况下的跨声速绕流计算程序。通过对双垂尾模型和GBM-03模型两个算例的计算,讨论了尾支撑位置及其几何外形参数对模型气动力的影响,并对GBM-03模型带短支杆情况下的纵向实验结果进行了修正。表明该方法对于分析研究风洞模型支架干扰问题并进行支架干扰修正是可行的、有效的、可以作为选择尾支撑位置及其几何外形参数和对跨声速风洞纵向实验结果进行支架干扰修正的工具。  相似文献   

10.
支架干扰修正在风洞试验数据修正体系中是很重要的环节,支撑系统对整个风洞流场的干扰是不可避免的,有些气动数据的测量值甚至会严重偏离真实结果,所以支架干扰修正方法一直是风洞数据处理的关键。常规的低速风洞试验一般采用腹撑支杆,对于支架干扰的修正一般采用试验映像两步法。对某型运输飞机低速风洞试验的支架干扰修正进行分析,数值模拟了支架对风洞流场环境的影响,研究了现行风洞数据支架干扰修正体系。  相似文献   

11.
王继明  高云海  焦仁山 《航空学报》2020,41(4):123526-123526
风洞到飞行相关性修正是获取现代大型客机低速气动特性的重要手段,通常采用增压提高风洞试验雷诺数,而支架干扰修正是该修正体系的一个关键环节。采用数值模拟研究了增压风洞腹撑的支架干扰,并分析了腹撑对飞机各部件的干扰及其对风洞流场的影响。通过数值模拟与风洞试验对比,表明升力系数相差0.006,阻力系数最大相差0.001 2,俯仰力矩系数最大相差0.01,验证了CFD数值模拟方法的可靠性。CFD计算结果表明:腹撑使得全机升力增加、阻力减小,俯仰力矩增加;腹撑对升力影响的主要部件是机翼,腹撑使得风洞中心以上动压增加,提升上翼面流速,从而增加了机翼的升力;与传统认识不同的是腹撑对阻力影响为负,且主要影响部件为缝翼,原因为缝翼下偏使得法矢分量向前从而减小了阻力;腹撑对俯仰力矩影响的主要部件是机身及平尾。研究结果揭示了腹撑对飞机气动特性影响的量级、主要影响部件及其流场变化,可为支架干扰数据修正及支架优化设计提供参考。所得结论可更好用于支架干扰试验的开展及风洞到飞行数据的修正,具有一定的工程实用性。  相似文献   

12.
为了在风洞中发展新型的腹支撑方式,基于FD-09风洞现有的下大迎角机构,设计研制了一套新型的单点腹支撑系统。单点腹支撑系统具有系统简便实用、模型设计简单、支撑干扰相对稳定等特点。在地面效应试验中使用布置光栅尺位移传感器的新方法取代了传统的测量方法,大大提高了控制精度和试验效率。风洞试验表明:单点腹支撑系统的试验重复性精度较高,部分指标已经接近国军标的先进指标;单点腹支撑系统的支杆干扰量是稳定的,并且对大部分气动分量的干扰量是小量;与双点腹支撑系统比较而言,单点腹支撑系统具有支杆干扰较小的优势。  相似文献   

13.
对气动院FL-9低速增压风洞尾撑支架干扰进行数值计算.通过合理的拓扑结构,生成了YF-16模型的分区对接网格.计算对模型的典型安装状态进行研究,获得了全机气动特性和支架干扰量,探讨了此安装状态下弯刀对飞机气动力的干扰特性,并重点研究了Re数对干扰量的影响规律.  相似文献   

14.
飞翼布局高速风洞尾支干扰试验修正技术研究   总被引:1,自引:0,他引:1  
飞翼布局飞行器模型往往具有尾部扁平的结构特点,进行高速风洞尾支测力时,尾部需要局部放大,由此带来尾部畸变和尾支杆的气动干扰,直接影响对巡航效率、焦点位置以及配平迎角的预测;另外,飞翼布局飞机为改善隐身特性,取消了平尾和垂尾,侧力和偏航力矩量级比较小,模型尾部的局部变形必然会对飞机横、航向试验数据带来不利影响。本文针对某飞翼布局模型,采用风洞试验和 CFD 数值模拟相结合的手段,通过腹支撑作为辅助支撑的“两步法”获得了尾部畸变及尾支杆的纵、横向支撑干扰影响。研究结果表明:该飞翼布局模型尾部畸变支撑纵、横向支撑干扰修正结果合理、可靠,精准度较高;所建立的试验与 CFD 相结合的研究方法可以用于类似布局的试验数据修正。同时,发展的数值计算方法与风洞试验有很好的一致性,已成功应用于某飞翼布局模型尾部支撑干扰修正,已具备工程使用价值。  相似文献   

15.
吴惠松  林麒  彭苗娇  柳汀  冀洋锋  王晓光 《航空学报》2019,40(11):123144-123144
设计了一种用于飞行器双机编队飞行的风洞试验模型绳系并联支撑机构,模拟在周边有障碍物的有限空间通道中的飞行运动。以直升机为例,根据工况参数设计了双绳牵引并联机构作为飞行器模型的支撑,建立了基于可移动的滑轮铰点与直升机模型编队协同飞行的运动学模型,对系统的静刚度进行了分析,并通过试验验证了旋翼转动对该绳系支撑系统动刚度的影响,给出了在有限空间通道中模拟双机编队飞行与着陆过程中绳与绳之间、绳与模型之间的干涉算法,并对该支撑机构的绳系结构进行了干涉分析。结果表明,所设计的支撑机构能有效解决模拟飞行器模型双机编队在有限空间中飞行运动时的支撑干涉问题,而且系统刚度达到低速风洞试验的稳定性要求,是低速风洞中支撑飞行器模型进行编队飞行试验的有效解决方案。  相似文献   

16.
马率  张露  刘钒  孙俊峰  崔兴达 《航空学报》2021,42(2):624010-624010
随着高性能计算机的发展,CFD已成为飞行器设计和流场分析不可缺少的重要手段,风洞试验与飞行数据的天地相关性问题正是其中一项重要的研究内容,X-37B作为继航天飞机之后美国发展的最成功的可跨大气层在轨飞行器,从气动特性角度分析其大气层内飞行走廊的状态对中国类似航天器的研制具有重要的借鉴意义。首先,对计算类X-37B布局飞行器的网格无关性及网格修正开展了研究,在此基础上提出的网格规模影响修正方法对该类飞行器的计算结果修正经过验证是可信的;然后,分别对比分析了雷诺数的影响和试验状态支架干扰的影响,完成了基于数值模拟的高空飞行与风洞试验气动特性差异分析。结果表明,网格规模主要对亚声速来流计算状态压差产生的轴向力影响较大,对法向力系数、俯仰力矩系数和纵向压心影响较小;雷诺数对该类飞行器气动特性特别是轴向力系数、阻力系数和升阻比有较大的影响,但随着马赫数的增加,影响特性开始变的非常复杂;由于风洞试验状态支杆存在,亚跨声速来流条件对该类飞行器的底阻影响很大,需要采取一定的方法和手段对支杆影响进行修正。  相似文献   

17.
大幅振荡试验支架干扰研究   总被引:1,自引:0,他引:1  
低速风洞大幅振荡试验是飞行器研制,特别是具有过失速机动能力的战斗机研制中,必不可少的试验研究项目。目前国内外已经开展了低速风洞大幅振荡试验,并开展了其他动态试验系统的支架干扰试验研究和大幅振荡试验洞壁干扰的试验研究,但对低速风洞大幅振荡试验结果中的支架干扰修正都没有进行过相应的研究。为了进一步提高低速风洞大幅振荡试验的数据准度,掌握支架干扰影响规律,在 FL-51风洞采用两步法对俯仰、滚转和偏航三个模态的单自由度大幅振荡风洞试验的支架干扰进行了测量。两步法支架干扰修正法使用叠加原理,认为辅助支架、映像支架和主支架对模型气动力的干扰作用都是线性叠加关系,没有考虑不同支架之间的相互干扰。通过设计加工专用的辅助支架和映像支架,利用两步法试验获得了单自由度大幅振荡试验支架干扰的影响量。分析发现大幅振荡试验中支架干扰影响量对单自由度大幅振荡试验的准度影响较大,进行大幅振荡试验时,需要进行相应的支架干扰试验,并且支架干扰影响量随频率增大而增大。结果表明大幅振荡风洞试验可以通过两步法进行支架干扰影响修正,进而提高试验结果的准度。  相似文献   

18.
基于张线尾撑的进气道低速风洞试验技术研究   总被引:1,自引:0,他引:1  
为了在φ3.2m风洞中开展战斗机大迎角进气道特性试验研究,结合该风洞开口试验段及支撑装置的特点,研制了能够模拟战斗机进气道流量的小型引射器装置,发展了基于引射器/张线尾撑一体化设计的战斗机大迎角进气道试验技术。为了验证该项试验技术,研制了进气道流量测量装置,以及基于数字阀的气源控制系统;进行了装置性能研究,并利用某战斗机模型开展了飞机鸭翼对进气道性能的影响试验研究。研究结果表明:引射器引射流量达1.34kg/s,引射器/张线尾撑一体化方案可完全满足我国已有战斗机在3m量级风洞开展进气道试验的流量模拟及开展大迎角试验研究的需求;鸭翼对战斗机进气道性能影响研究为进气道试验模型外形模拟提供了依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号