首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The radial pulsations of very luminous, low-mass models (L/M 104, solar units), which are possible representatives of the R CrB stars, have been examined. These pulsations are extremely nonadiabatic. We find that there are in some cases at least one extra (strange) mode which makes interpretation difficult. The blue instability edges are also peculiar, in that there is an abrupt excursion of the blue edge to the blue for L/M sufficiently large. The range of periods of the model encompasses observed periods of the Cepheid-like pulsations of actual R CrB stars.  相似文献   

2.
This is an observational review, with an emphasis on photometric data and their interpretation. Two lists are presented, one containing β Cephei stars, and the other, β Cephei suspects. These lists then serve as a basis for discussing such topics as the location of β Cephei stars in the observational and theoretical H-R diagrams, the evolutionary state of these stars, the period-luminosity and period-luminosity-color relations, and observational identification of pulsation modes. The paper also includes references to recent work connected with the theoretical discovery that an opacity mechanism is responsible for the excitation of β Cephei-star pulsations. Finally, observational programs for verifying the consequences of this discovery are suggested.  相似文献   

3.
Conclusions My aim in this presentation has been to begin the confrontation between models for soft X-ray emission from low-luminosity galactic X-ray sources and currently available data. I have focussed principally on disk population stars, irrespective of spectral type, luminosity class, and age; and have used predictions of source temperatures and variability to distinguish between the various models. Although much remains to be done, I believe it is already possible to state that the X-ray emission characteristics of late and early spectral types, and young and old stars share many similarities, and that an economical explanation is that we are seeing the manifestations of solar coronal surface activity modulated by the stellar parameters which govern stellar magnetic activity (for example, rotation). In some cases (such as for OB stars), a proper theory accounting for the heating of such coronal plasma does not yet exist, but I am confident that the theorists will be up to this challenge.  相似文献   

4.
Geomagnetic pulsations   总被引:1,自引:0,他引:1  
Conclusion In writing this review paper the author has been aware that although the present international classification on geomagnetic pulsations (see Table I) had been really useful for several years since the Berkeley Meeting, it seems unsuitable for the up-to-date pulsation study. This is mainly due to the fact that it depends only on the period and waveform of the pulsations. For example, (1) occurrence of PP type of Pc1 even in the international Pc3 range (Heacock, 1966), (2) PP and CE getting mixed in a common period band (cf. 2.7), (3) similar mixing tendency of Pc3 with Pc4 (cf. 3.3 or Figure 21), (4) subtypes of Pi pulsations having common period ranges but different source mechanisms, (5) existence of various types of pulsations which can be classified neither to Pc nor to Pi (cf. Section 6), and so on. Hence the author feels that a new pulsation classification based on physical image on the occurrence models is really needed now.According to the international definition which has a period range of pulsations from 0.2 (5 Hz) to 600 sec, a part of the following electromagnetic field fluctuations called ELF emissions and ELF whistlers should belong to geomagnetic pulsations. ELF emissions are at times observed near 4 Hz and 9 Hz. They are so termed because of the difference between these frequencies and the Schumann resonance frequencies of 8 and 14 Hz (Yanagihara and Shimizu, 1969; Polk, 1969). Another type, ELF whistlers, exhibit either rising, falling or fluctuating tones from about 2 Hz to probably a few tens of Hz (Duffus, Nasmyth et al., 1958; Yamashita, 1967; Glangeaud, 1967; Yanagihara and Shimizu, 1969). In this review paper, however, both ELF emissions and whistlers have not been reviewed, since most of these seem to be out of the international frequency range so far as present observational knowledge is concerned. Some of the Pc6 and Dp2, involved in the international period range of pulsations, have also not been commented on, but the reader is advised to refer to Herron (1967) and Nishida (1968), respectively, for more detail.It has been frequently pointed out in this paper that latitudinal dependence of pulsation amplitude is one of the most important clues for seeking the model of excitation and propagation of HM and EM waves, but that this dependence has not been precisely obtained so far owing to the difference in geomagnetic longitude of the pulsation stations (for example, see Figure 40). Cooperative observations based on standardized magnetometers are eagerly desired at stations which are densely arranged along the same magnetic meridian, even if the observation is temporal.As already reviewed, various conflicting models have been proposed for each type of pulsation. On the occurrence of pc's, for example, there are two main conflicting models. In the first model, Pc2, 3, and 4 (Troitskaya, 1967; Patel and Hastings, 1968; and others) or Pc3 and 4 (Radoski and Carovillano, 1966) are related to one and the same resonance system and the difference in the type of these pc's is attributed to an effect of geomagnetic activity on the size of this system. In the second model, Pc2, 3, 4 and 5 are related to three or four different resonant systems (Jacobs and Sinno, 1960b; Hirasawa and Nagata, 1966; Kato, Mori et al., 1968; and others). Most of the conflict among such models seems to be removable by combining more thorough theoretical studies and correct dynamic spectrum analyses of the data at the polar region, auroral zone, sub-auroral zone, and middle and low latitudes, for various geomagnetic disturbance conditions.  相似文献   

5.
This is an observational review, with an emphasis on photometric data and their interpretation. Two lists are presented, one containing Cephei stars, and the other, Cephei suspects. These lists then serve as a basis for discussing such topics as the location of Cephei stars in the observational and theoretical H-R diagrams, the evolutionary state of these stars, the period-luminosity and period-luminosity-color relations, and observational identification of pulsation modes. The paper also includes references to recent work connected with the theoretical discovery that an opacity mechanism is responsible for the excitation of Cephei-star pulsations. Finally, observational programs for verifying the consequences of this discovery are suggested.Belgian Fund for Scientific Research (NFWO).  相似文献   

6.
Morphology and physics of short-period magnetic pulsations   总被引:5,自引:0,他引:5  
This review is devoted to the main problems of experimental and theoretical investigations of geoelectromagnetic waves in the frequency range from 0.1 to 5 Hz. These waves constitute the short-period subclass of so-called geomagnetic pulsations. The short-period pulsations are represented by Pc1, Pc2, Pi1, Ipdp types and some subclassifications. The understanding of the pulsation mechanisms provides an insight into the structure and dynamics of the Earth's magnetosphere. We focus our attention on Pc1 pearl pulsations and on the classical (evening) Ipdp, for which basic physical concepts have been established. Other types and varieties are outlined also, but in less detail. In these cases, the physical mechanism is not always clear (as, for example, in the case of morning Ipdp), and/or the morphology is still to be determined carefully (Pc2 and discrete signals in polar cusps as typical examples).Short-period pulsations are a spontaneous, sporadic phenomenon which undergo a certain evolution in the course of a magnetic storm. We consider the storm-time variation as a natural background, and we use this background to collect the information about the pulsations in an orderly manner. At the same time, together with the transient storm-time variation of pulsation activity, quasi-periodic variations take place, which are connected with the Earth's and Sun's rotation, Earth's orbital motion and solar cycle activity. The study of these regular variations allows us to have a new approach to the mechanisms of excitation and propagation of short-period geomagnetic pulsations.  相似文献   

7.
Let us suppose that it is possible observationally to determine the number ratio of WR to O stars in a starburst galaxy (cf. e. g. Vacca &; Conti 1992) and that one can also have some information on the way the different WR subtypes are distributed (number ratios as WN/WR, WNL/WR etc ...), the question is, what can we deduce from these values on the burst of star formation which gave birth to these WR stars? Is it possible for instance to constrain the age of the burst (i.e. the time elapsed since the beginning of the burst of star formation), its intensity (i.e. the ratio of the star formation rate during the burst to that before the burst) or the metallicity of the cloud from which the stars formed? We present here models of starbursts based on the most recent models for single stars computed by the Geneva group and show that the study of the WR population in a starburst provides very useful insights on the age of the burst and on the metallicity of the star forming zone.  相似文献   

8.
Unseen companions to nearby stars are found astrometrically through perturbations in the proper motion from photographs taken with long-focus telescopes. The number of known unseen astrometric companions to nearby stars with photocentric orbits has grown by thirty percent in the last few years. Individual cases are discussed and optimum epochs given for resolution of the components. Orbital analysis of the photocentric positions on the photographic plates provides all information for accurate mass determination of the components except for m and angular separation, , of the two components which must come from another technique. There are potentially thirty low luminosity stars including some likely sub-stellar objects whose masses could be instantly found with the observations of these additional two parameters.A list of the stars known within five parsecs as of 1978 July is given and the status of unseen companions to these stars is discussed on the basis of long interval astrometric coverage.  相似文献   

9.
Evolutionary models allow an assignment of both a mass and a luminosity to a Wolf-Rayet (WR) star in a cluster, and hence allow a determination of the Bolometric Correction (B.C.). The B.C.'s derived for WN stars range from –4.0 to –6.0 with the expected trend of larger values (in absolute values) for stars with higher excitation spectra. For WC stars, there is little evidence for a similar trend; most observations presented here are consistent with B.C.=–4.5, as found by Smith and Maeder (1989). The convergence of B.C. values derived from evolutionary and atmospheric models is extremely satisfactory, giving increased confidence in both methods.  相似文献   

10.
We see neutron stars principally by their radio and X-ray emission. Their appearance in these different bands depends on whether the emission comes from the surface or its magnetosphere. New phenomena continue to be found from neutron stars, which makes it an exciting and topical research area. This volume is a collection of the papers from a NATO Advanced Study Institute held in Italy in October 1996. Many, and for me the most interesting ones, are substantial reviews on topics such as Pulsar magnetic fields and glitches (M. Ruderman), Radio pulsar population properties (D. Lorimer), Gamma-ray emission from CGRO pulsars (G. Kanbach), Neutron stars and black holes in X-ray binaries (J. van Paradijs), Kilohertz quasi-periodic oscillations in low-mass X-ray binaries (M. van der Klis), Thermonuclear burning on rapidly accreting neutron stars (L. Bildsten), On the X-ray emission properties of rotation powered pulsars (W. Becker and J. Truemper). It will serve as a useful reference and source book for students in high energy astrophysics and related fields. The high price may deter its purchase by individuals, but it will be a good volume for a library needing recent coverage on neutron stars. It does not of course include the most recent developments on anomalous X-ray pulsars or magnetars. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
12.
The Einstein Observatory showed that Wolf-Rayet stars have a much larger range in the ratio of X-ray to bolometric luminosity than normal early-type stars. EXOSAT measurements of HD193T93 (WCT+abs) show it to be extremely X-ray bright. This result is probably not connected with the infra-red and radio outburst that the star underwent in 1977. Other Einstein X-ray sources which are probably identified with Wolf-Rayet stars are newly reported.  相似文献   

13.
Mode identifications from the phase shift between the B-V color curves and the V light curves of Delta Scuti stars are discussed. For five Delta Scuti stars the frequency of highest amplitude is due to pulsation in a radial mode with one or more frequencies due to nonradial modes lying nearby. Thus there may be a resonance between the frequencies of radial and nonradial modes. This behavior has only been found in subgiant and giant stars so far, but this could easily be a selection effect. Theoretical predictions of frequencies for different 1-modes of the same overtone for main sequence, subgiant, and giant stars are needed to compare with these observations. Theoretical predictions of the strength of resonance coupling between radial and nonradial modes as a function of frequency separation are also needed.  相似文献   

14.
Gerhard  Ortwin 《Space Science Reviews》2002,100(1-4):129-138
This article summarizes recent work on the luminosity and mass distribution of the galactic bulge and disk, and on the mass of the Milky Way's dark halo. A new luminosity model consistent with the COBE NIR data and the apparent magnitude distributions of bulge clump giant stars has bulge/bar length of 3.5 kpc, axis ratios of 1:(0.3–0.4):0.3, and short disk scale-length (2.1 kpc). Gas-dynamical flows in the potential of this model with constant M/L fit the terminal velocities in 10° le|l|le50° very well. The luminous mass distribution with this M/L is consistent with the surface density of known matter near the Sun, but still underpredicts the microlensing optical depth towards the bulge. Together, these facts argue strongly for a massive, near-maximal disk in our L *, Sbc spiral galaxy. While the outer rotation curve and global mass distribution are not as readily measured as in similar spiral galaxies, the dark halo mass estimated from satellite velocities is consistent with a flat rotation curve continuing on from the luminous mass distribution.  相似文献   

15.
Conclusions We have attempted to model bumps in the light and radial velocity curves of the Beta Cephei star BW Vulpeculae. Two mechanisms, a resonance phenomena and non-linear pulsations, were investigated. The resonance condition was clearly not fulfilled, the calculated period ratio being approximately 0.60, where a value of 0.50 ± 0.03 is required for resonance. In the non-linear calculation, the bump appears, with the correct phase, but was found at an amplitude that is too large. Further, the light curve does not show any bump-like feature. The cause of the bump is the large spurious boost given the star's velocity field by the solution methods.The calculated periods of the stellar models are shorter than those of previous calculations, enhancing the possibility that these stars pulsate in a radial fundamental mode.  相似文献   

16.
More than half a century after the discovery of Pi2 pulsations, Pi2 research is still vigorous and evolving. Especially in the last decade, new results have provided supporting evidence for some Pi2 models, challenged earlier interpretations, and led to entirely new models. We have gone beyond the inner magnetosphere and have explored the outer magnetosphere, where Pi2 pulsations have been observed in unexpected places. The new Pi2 models cover virtually all magnetotail regions and their coupling, from the reconnection site via the lobes and plasma sheet to the ionosphere. In addition to understanding the Pi2 phenomenon in itself, it has also been important to study Pi2 pulsations in their role as transient manifestations of the coupling between the magnetosphere and the ionosphere. The transient Pi2 is an integral part of the substorm phenomenon, especially during substorm onset. Key questions about the workings of magnetospheric substorms are still awaiting answers, and research on Pi2 pulsations can help with those answers. Furthermore, the role of Pi2 pulsations in association with other dynamic magnetospheric modes has been explored in the last decade. Thus, the application of Pi2 research has expanded over the years, assuring that Pi2 research will remain active in this decade and beyond. Here we review recent advances, which have given us a new understanding of Pi2 pulsations generated at various places in the magnetosphere during different magnetospheric modes. We review seven Pi2 models found in the literature and show how they are supported by observations from spacecraft and ground observatories as well as numerical simulations. The models have different degrees of maturity; while some enjoy wide acceptance, others are still speculative.  相似文献   

17.
Observations indicating the presence of stellar chromospheres, that is hot envelopes around stars are summarized. Undisputed indicators (called type I) for hot stellar envelopes are spectral lines of highly ionized atoms, Fe ii emission lines and flares in late type stars and the presence of the He i10830 Å line. Whether indicators (called type II) like emission cores in the Ca ii H and K and Mg ii h and k lines or mass loss signify the presence of stellar chromospheres is still somewhat debated, although the discussion points in favour of the usefulness of these indicators. The combined evidence to date shows that all non degenerate type stars have chromospheres except possibly the A stars. There are however theoretical reasons for expecting chromospheres in A stars. Empirical chromosphere models for a rapidly growing sample of stars have recently been constructed on the basis of Ca ii and Mg ii line observations. A discussion of possible heating mechanisms is given and the relative importance of these mechanisms is evaluated. For the low and middle chromosphere the short period acoustic heating mechanism seems to be the dominant process although there are still uncertainties. Both steady state and time dependent theoretical models of stellar chromospheres, based on the short period acoustic heating theory, are discussed, and predictions of these models are compared with results from empirical models. This relatively favourable comparison shows that the explanation of the Wilson-Bappu effect might be at hand.  相似文献   

18.
We present up-to-date evolutionary models of low-mass stars, from M0.6 M down to the hydrogen burning minimum mass, using recent equation of state and synthetic spectra calculations. Comparison is made with observed luminosity function for these objects. We also present implications for the dark-matter distribution in the galactic halo.  相似文献   

19.
The unusual event of November 17, 1991 07:04 UT, observed at 2.5 and 2.85 GHz, is analysed. The event reveals the sophisticated superfine time structure including sudden reductions and quasi-periodic pulsations. We shown that the sudden reductions (30–100 ms) can be driven by upward injected 100 keV electron beams filling the losscone of the coronal magnetic trap. The nonlinear oscillations of Langmuir waves provide the best fit for the pulsation observed. A reduced steady-state level of the pulsation phase is connected with quasi-continuous injection of electrons. The physical parameters of the radio source are found for the event.  相似文献   

20.
Summary The most striking aspect of the Cep and 53 Per stars is their complexity. Whereas in Cepheid-type variables, a dominant mechanism excites a dominant mode (or two at most) of a dominant kind of pulsation, in Cep stars, a number of mechanisms and processes are at work. Still there is hope that the mystery will soon be unraveled by the careful application of a combination of observational and theoretical techniques. These same techniques will provide a better understanding of B stars in general: their interior and atmosphere, mass loss and coronal heating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号