首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 531 毫秒
1.
高亚声速空腔绕流气动噪声特性研究   总被引:2,自引:0,他引:2  
通过分析空腔底面中心线上声压级分布与不同测点声压频谱特性,着重研究了高亚声速空腔绕流的气动噪声特性。空腔模型长深比分别为6、10和15,自由来流马赫数为0.8,基于每米的雷诺数为1.55×107,测量的空腔前缘的边界层厚度为0.034m。结果表明:空腔后缘处于噪声产生区,声压级较高;闭式和过渡式空腔因深度较小,来流剪切层触及了空腔底面,干扰了从腔后壁向腔前壁的噪声反馈回路,限制了腔内流动自激振荡的形成;开式空腔深度较大,剪切层直接跨过空腔中部、撞击腔后壁,并产生强烈噪声,噪声从腔后壁通过空腔向前壁的反馈回路未受到干扰,故腔内流动出现自激振荡和多个声压峰值频率。  相似文献   

2.
超声速空腔流激振荡与声学特性研究   总被引:2,自引:1,他引:1  
基于高速风洞试验研究了超声速时空腔流激振荡与声学特性.试验马赫数为1.5,基于每米的雷诺数为2.26×107,来流边界层厚度为0.024 m,试验空腔长深比分别为15,12和6.结果表明:空腔内形成的剪切层与腔后壁相撞诱发腔内较强烈噪声,噪声从腔后缘向腔前缘传播时受到腔内流动的干扰,故同频率下腔后缘处的声压均高于腔前中部区域的声压.闭式和过渡式空腔长深比较大,剪切层与腔底面相撞在腔内形成的压缩波或激波,干扰了从腔内声波反馈回路、限制了流激振荡的形成,故腔内未出现明显的声压峰值激振频率;开式空腔长深比较小,剪切层直接跨过空腔中部与腔后壁相撞,产生的噪声向腔前缘传播,腔内形成流激振荡,并出现多个声压峰值激振频率.   相似文献   

3.
开式空腔气动声学特性及其流动控制方法   总被引:1,自引:0,他引:1  
在高速风洞中对空腔流场气动声学特性进行了试验研究,采用剪切层扰流法对流场进行流动控制,空腔长深比为4.1。通过对空腔流场的脉动压力试验结果分析,研究了亚、跨声速条件下开式空腔流场的气动声学特性及气动噪声抑制效果,对开式空腔流场气动噪声形成机制及流动控制机理进行了分析。试验结果表明:开式空腔流场气动声学环境恶劣,最大总声压级(OSPL)高达177dB;开式空腔流场存在强烈的自持振荡,声压频谱曲线上存在多个不同模态的单调声;亚声速条件下,采用剪切层扰动法进行流动控制可导致空腔流场气动声学环境更加恶劣;跨声速时,采用剪切层扰动法进行流动控制使空腔流场气动声学环境明显改善。  相似文献   

4.
基于 LES 方法的增升装置气动噪声特性分析   总被引:3,自引:0,他引:3  
在气动噪声数值计算中,流场的求解精度对涡流扰动的细节计算以及声学的求解结果有着重要的影响。本文应用 LES 方法对增升装置的流场进行数值模拟,采用可穿透积分面的 Ffcows Wil1iams-Hawkings(FW-H)积分方法进行远场噪声计算。采用圆柱绕流算例对本文的数值计算方法进行了验证,验证结果表明:本文所使用的LES 方法能准确地捕捉到涡脱落、流动分离等非定常流动现象,可为远场气动噪声的计算提供精确的近场流动的数值解;基于 FW-H 的声类比方法能够精确高效求解远场气动噪声。在此基础上,对增升装置噪声产生的流动特性、远场特性、风速影响等进行了数值模拟研究。结果表明:缝翼产生气动噪声的主要原因是,流动在缝翼和主翼之间的凹槽形成的不稳定波以及缝翼钝后缘的小脱落涡;襟翼产生气动噪声的主要原因是,襟翼附近由于流动分离产生的高频的小尺度不稳定涡和低频的大尺度涡。  相似文献   

5.
为研究运动舱门对内埋弹舱(空腔)非定常流场和舱内噪声特性的影响,开发了应用于运动问题的动态嵌套重叠网格组装方法,采用改进的脱体涡模拟方法对亚声速流场(Ma=0.6)进行了高精度数值模拟。首先采用空腔标准模型(M219)验证所用的高精度数值格式的有效性,然后应用发展的方法对干净空腔(C201)、带静态舱门(30°、60°、90°和120°)的空腔以及运动舱门的空腔进行模拟,并分析静、动态舱门对空腔湍流流场和腔内气动噪声的影响。针对运动舱门的非稳态非定常流动问题,采用经验模态分解方法分析空腔中的湍流脉动特征和声压级。通过分析研究结果发现,与干净空腔相比,舱门小开度(30°)时,舱门会限制法向和展向的流动,从而降低腔内流场与外部流场的流动掺混和交换,腔内壁面总声压级比干净空腔低5~8 dB,但是两者变化趋势一致,且二阶Rossiter模态频率偏高;在打开角度较大(60°以后)时,舱门对腔内流动的影响主要表现在展向,此时空腔上方的剪切层涡结构运动的高度更高,舱门阻碍噪声的展向传播,使得腔内的总声压级升高(3~10 dB不等),二阶Rossiter模态的强度增大。然而舱门开启过程中,腔内总声压级...  相似文献   

6.
基于CFD的直升机旋翼噪声计算   总被引:1,自引:0,他引:1  
应用CFD技术和气动声学的时域理论,研究直升机旋翼悬停流场及气动噪声.噪声计算以旋翼流动解为基础,采用了气动声学时域理论,文中对该理论进行了推导和说明,并给出了旋翼旋转噪声的预测算例.  相似文献   

7.
后壁倒角对开式空腔气动噪声抑制作用研究   总被引:1,自引:0,他引:1  
在高速风洞中对空腔流场气动声学特性进行了试验研究,对空腔后壁进行倒角,以降低气流在该处的撞击强度,从而达到抑制空腔流场气动噪声的目的。试验马赫数(Ma)为0.6~1.2,空腔长深比(L/D)为4.1、4.7。试验结果表明:亚跨声速范围内,随马赫数增大,开式空腔流场气动声学环境恶劣程度加剧,最大总声压级高达170dB以上,声压频谱曲线上存在多个不同模态的单调声;后壁倒角后,腔底总声压级强度明显降低,且其降低程度随马赫数增大愈趋明显,最大可降低近7dB,空腔后壁上主噪声源附近总声压级强度可降低约1dB,声压频谱曲线上的能量峰值明显减弱。  相似文献   

8.
边界层厚度对腔体气动声学特性影响数值模拟   总被引:1,自引:1,他引:0  
为了研究来流边界层厚度对开式腔体气动声学特性的影响,基于分离涡模拟方法,计算了来流马赫数为2.0条件下,不同来流边界层厚度与腔体深度比时,长深比为5.88的腔体流动特性,得到了该腔体声压级的频谱特性.计算结果表明:随着来流边界层厚度增加,形成的剪切层稳定性增强,失稳后上下摆动幅度减少,失稳生成的大尺度涡与超声速主流的相互作用减弱,使得大尺度涡发展到腔体后缘时所具有的平动动能和转动动能降低.大尺度涡撞击腔体后缘在腔体内形成的气动噪声的声压级降低,最大减小幅度达7.5dB.同时各阶模态的频率也发生偏移,偏移值在100Hz左右.基于新的假设重新推导了Rossiter公式,明确了经验常数的物理意义,并以此解释了频率偏移现象.   相似文献   

9.
飞机起落架气动噪声特性仿真与试验   总被引:1,自引:0,他引:1  
龙双丽  聂宏  薛彩军  许鑫 《航空学报》2012,33(6):1002-1013
 对某型飞机前起落架的气动噪声特性进行了数值仿真分析和声学风洞试验研究。在典型飞机着陆速度下,采用分离涡(DES)方法模拟起落架周围非定常湍流流场,通过涡声理论计算声源的强度和位置,并利用FW-H(Ffowcs-Williams/Hawkings)方程积分外推法求解出不同部件及其组合件产生的声场,分析其噪声的产生机制、频谱特性及远场指向特性,同时评估各部件对总噪声的贡献量。在声学风洞中对轮胎和轮叉组合件进行气动声学试验,借助麦克风测量获得了噪声的频谱特性。基于部件固体表面积分计算的仿真结果与试验结果在声学远场条件下吻合较好。仿真结果表明:起落架气动噪声是钝体绕流噪声和空腔噪声的叠加,呈现宽频噪声的特性。强度最大的声源主要分布在起落架各部件的固体表面;轮胎噪声对总噪声的贡献最大,其次是轮叉噪声,支柱噪声对总噪声贡献最小。各部件噪声和总噪声均具有偶极子声源的辐射特性。空间可穿透积分面计算的声压级结果比固体表面计算的声压级结果大5 dB左右。该研究结果为低噪声起落架设计提供了一定的参考。  相似文献   

10.
采用混合方法对气流作用下的膨胀腔的非稳态流动和气动噪声进了数值仿真分析。建立基于有限体积法的流体仿真模型,采用大涡模拟方法对膨胀腔内部非稳态流动进行计算。数值仿真结果捕捉到了腔体内部非稳态流动以及涡量的发展变化过程,并与实验观测结果基本吻合。采用积分插值的方法将流场结果插入声学网格上,基于气动声学理论计算腔体内部的流噪声源。建立声学仿真模型,将流噪声源导入声场网格中计算远场响应点的声压,并与实验结果进行对比,声压级以及共振频率都吻合良好。结果表明:混合仿真方法准确直观揭示出管内流噪声产生的机理和过程,尾管辐射噪声的仿真结果与实验结果及理论计算结果的偏差都在5%以内。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号