地效对飞机气动特性的影响研究

The Study of the Ground Effects on the Aircraft Aerodynamic Characteristics

王继明 / Wang Jiming (上海飞机设计研究院,上海 201210)

(Shanghai Aircraft Design and Research Institute, Shanghai 201210, China)

摘 要:

当飞机起飞或着陆时由于近地会产生地面效应。地效使得飞机的气动特性发生较大变化,如升力增大、阻 力减小及静安定度的提高等。通过试验数据分析了地效状态下纵、横航向气动特性及舵效的变化,并对其 内在影响机理进行了初步分析。结果显示,地效使得着陆构型失速提前约2°、纵向静安定度增加约0.15b,、 横向安定性增加约10%~20%、平尾效率减小可达10%、方向舵效率变化较小但副翼效率减小可达10%。 由此使得飞机的失速特性、横航向稳定性及操纵性变差。

关键词:地效;静安定度;机理;舵效

中图分类号:V212

文献标识码:A

[Abstract] As an aircraft takeoff or landing, the aerodynamic characteristics change a lot for the ground effect, such as lift/stability increasing and drag reducing etc. This paper analyzes the change of the longitudinal/lateral characteristics and maneuvering surface efficiency, and also tries to analyze the mechanism of the ground effect. Results show that, with ground effect, the stall happens 2° earlier, longitudinal stability increases 0.15 b_A, lateral stability increases 10% ~20%, horizontal tail efficiency increases 10%, rudder efficiency changes little while the decrease of the aileron efficiency can reach 10%. Due to these effects, stability and maneuvering ability of the aircraft are deteriorated.

[Key words] ground effect; stability; mechanism; maneuvering surface efficiency

引言 0

地效是指飞行器近固定面(如地面、水面)产生 增升减阻的现象。关于该现象的机理,目前普遍的 观点认为由于翼梢涡及机翼的下洗流受到固定面 的抑制从而增加升力及减小诱导阻力。飞机在起 飞和着陆时都有一段接近地面的过程,一般距地面 半个展长时,地效开始起作用,随着距离的接近地 效会变强。关于地效试验研究,也有采用活动地板 模拟[1],活动地板优点是更接近于实际飞行情况但 缺点是机构更复杂,限于目前国内试验技术及设 备,本文采用的是固定地板研究。目前关于近地时 气动特性机理变化的研究文献较少。近地时较明 显的变化就是升力的增加及阻力的减小, Juhee Leep^[2]等认为升力的增加主要是下表面压力的增加 而上表面不变引起,近地时翼梢涡得到抑制从而减 小了阻力。

本文将以某翼吊常规布局民机为研究对象,从 带地效后对其纵向、横航向气动特性及各操纵面效 率的变化进行分析,并尝试给出影响机理的初步 分析。

试验描述

风洞试验段尺寸 4m×3m, 为连续回流式风洞, 试验风速 70m/s。地效为固定地板模拟。某民机为 下单翼,翼吊常规布局,试验模型比例为1:14,模 型展长2557mm,平均气动弦长305mm,参考面积为 0.646m²。通过空中及地效纵向和横航向状态各构 型的数据对比,获得地效对纵向和横航向气动特性 的影响:同时对比各舵效在空中及地效状态下的数 据,获取地效对舵效的影响。

试验结果及分析

2.1 试验重复性

为验证风洞流场的稳定性有必要安排重复性 试验以确保数据的可靠性。从表1试验数据来看, 升力、阻力及俯仰力矩均达到国军标要求(升力合 格指标 0.002, 阻力合格指标 0.000 5, 俯仰力矩合 格指标 0.001 2), 重复性较好。

表 1 试验重复性误差列表

攻角(°)	CL 升力系数	CD 阻力系数	Cm 俯仰力矩系数
1	0.000 5	0.000 1	0.000 7
2	0.000 3	0.000 2	0.000 8
3	0.000 6	0.000 2	0.000 7
4	0.000 3	0.000 2	0.000 4

2.2 对纵向气动特性的影响

图 1 所示为地效对不同构型气动特性的影响, 图中"巡航空中"指巡航构型空中试验状态,"巡航 地效"是指巡航构型地效试验状态。由图1可知, 地效状态下在线性段表现为升力线斜率增加,失速 攻角提前约 2°;地效使得沿流向逆压梯度增加,当 襟翼放下时更为明显,而逆压梯度的增加使得机翼 表面分离提前,从而减小了失速攻角。最大升力系 数表现为升力线斜率增加和失速攻角的综合效果, 对于巡航构型,升力线斜率增加占优势,故地效状 态下最大升力系数增加,而对于着陆构型失速攻角 的提前使得最大升力系数减小占主导。对于阻力 而言,地效和空中状态的极曲线是相交的,地效使 得零升阻力增加,升致阻力减小。对于力矩,带地 效后焦点后移约 0.15b,,静安定度增大。

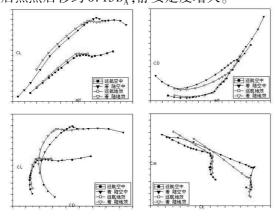


图 1 地效对纵向气动特性的影响(无起落架)

2.3 对横航向气动特性的影响

表 2 给出了地效对各构型及攻角下侧向力系 数、滚装力矩系数及偏航力矩系数随侧滑角导数的 影响。由表2数据可知带地效后使得横向稳定性增 加约 10%~20%, 攻角大于 6°巡航构型航向安定性 变化不大,着陆构型航向安定性减小约20%。

表 2 地效对横航向气动导数影响量(%)

构型	α	C_{\wp} (横向 静安定度)	C_{ω} (航向 静安定度)	$C_{\nu \rho}$ (侧力系数 对侧滑角导数)
	0	20.08	23.58	21.76
巡航	6	10.07	1.36	9.55
	9	20.86	-0.69	9.25
着陆	0	29.02	25.34	-83.04
	6	16. 13	-21.63	-82.29

对于横向稳定性,垂尾约占25%,翼身组合体所 占比例较大。翼身组合体对横向稳定性的贡献主要 由几何尺寸(后掠角、上反角、扭转角、展弦比及根梢 比)及升力系数决定。在线性范围内,升力系数越大, 翼身组合体对横向稳定性的贡献越大。带地效后,线 性段升力系数增加使得横向稳定性增加。

2.4 对平尾、升降舵效率的影响

地效对飞机平尾及升降舵效率的影响关系到 飞机着陆后的配平及纵向操纵效能。图 2 及表 3 所 示为地效对平尾及升降舵效率的影响,表4为地效 对下洗的影响。

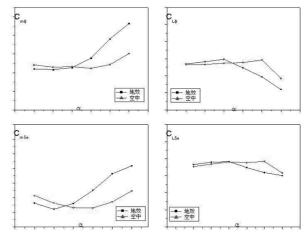


图 2 地效对平尾及升降舵效率的影响(着陆构型)

由图 2 及表 3 数据可知地效状态下,在攻角超 过9°后平尾及升降舵效率下降较大,如在12°时,平 尾效率下降接近25%。 分析可能原因是地效状态 (下转第77页)

分析与设计[M]. 北京:北京航空航天大学出版社,1990.

- [2] 焦景堂. 航空机载设备可靠性维修性工程指南[M]. 北 京:北京航空航天大学出版社.1993.
- [3] [日]市田嵩,铃木和幸编著.郭建英,沙巨大译.可靠性 分布与统计[M]. 北京:机械工业出版社,1988.
- [4] 曾天翔,等译. 可靠性设计手册[M]. 北京: 航空工业出 版社,1987.
- [5] 胡昌寿. 可靠性工程-设计、试验、分析、管理[M]. 北京:

宇航出版社,1988.

- [6] 陆廷孝,等. 可靠性设计与分析[M]. 北京:国防工业出 版社.1995.
- [7] 姚一平,李沛琼. 可靠性及余度技术[M]. 北京:航空工 业出版社.1991.
- [8] 王珍熙. 可靠性、冗余及容错技术[M]. 北京: 航空工业 出版社.1991.

(上接第57页)

下沿气流方向存在一定的逆压梯度,这使得机翼及 平尾表面较早分离,另外下洗的抑制也使得平尾当 地攻角较大,这也使得平尾分离提前。

表 3 地效对平尾及升降舵效率的影响(%)

α	0	3	6	9	12	15
$C_{m\varphi}$ (平尾 效率)	3. 76	2. 28	0. 88	-9. 55	-24. 82	-32. 39
C _{mδe} (升降 舵效率)	7.67	5.81	-3.72	-15.65	-26.39	-26. 21

表 4 地效对下洗的影响

	$arepsilon_0$ (零攻角下洗角)	$arepsilon_{\scriptscriptstylelpha}(下洗率)$		
空中	5.8	0.31		
地效	4.7	0.091		

由表4数据可看出,地效使得零攻角时下洗角 减小了1.1°.下洗率约减小为空中状态的1/3。下 洗的减小使得翼梢涡的强度得到抑制,能耗降低, 阻力减小,该结果也与2.2 中纵向结论一致。

2.5 对方向舵、副翼效率的影响

表 5 地效对方向舵效率 C_{m} 的影响(%)

	β	-11	-6	0	6	12
$\alpha = 0$	C_{ror} (侧力系数对方向舵偏角导数)	5. 21	4. 70	4. 99	7. 67	8. 60
	$C_{n\delta r}$	2. 95	2. 54	2. 28	3. 80	3. 21
α=6	$C_{_{Y\delta r}}$	-2. 38	-5. 88	-3. 03	-2. 75	4. 26
	$C_{n\delta r}$	1. 89	-1. 97	-0. 86	-1. 95	3. 24
$\alpha = 12$	$C_{_{Y\delta r}}$	-0. 39	-2. 98	-7. 36	-8. 04	0. 20
	$C_{n\delta r}$	3.69	-0.35	-4.64	-3.51	1.55

表 6 地效对副翼效率 C_{loa} 的影响(%)

β	-11	-6	0	6	12
$\alpha = 0$	8. 62	6. 59	4. 19	2. 74	0.31
$\alpha = 6$	-6. 81	-5. 57	-6. 96	-4. 70	-7. 48
$\alpha = 12$	-9.38	-13.13	-10.69	-11.20	-9.39

地效对飞机方向舵及副翼效率的影响关系到 飞机着陆后的横航向操纵效能。表5及表6所示为 地效对方向舵及副翼效率的影响。方向舵效率 C_{uv} 在上述表格攻角及侧滑角范围带地效后变化在5% 以内。副翼效率的变化稍大,最大达到13.1%。地 效对沿气流方向流场及压力分布影响较大,当侧滑 角不大时不至于引起左右较大不对称,故方向舵效 率变化较小可能与此相关。

结论

本文通过对下单翼翼吊常规布局某民机进行 地效试验,获取了地效对纵横向及舵效的影响。地 效使得零升阻力增加,抑制了翼梢涡故升致阻力减 小。地效使得沿气流方向有逆压梯度,从而使得失 速提前、纵向压心后移并且攻角越大地效越明显压 心后移越大,故静安定度增大,地效使得焦点后移 约0.15b,;在线性范围内,升力系数越大,翼身组合 体对横向稳定性的贡献越大。地效使得线性段升 力系数增加使得横向稳定性增加约10%~20%,攻 角大于6°巡航构型航向安定性变化不大,着陆构型 航向安定性减小约20%,地效在攻角超过9°后平尾 及升降舵效率下降较大,方向舵效率变化不大,副 翼效率在攻角 12°时下降约 10%。

参考文献:

- [1] Arron Melvin and Luigi Martinelli. Aerodynamic Shape Optimization of Multi-element Airfoils in Ground Effect, 46th AIAA Aerospace Sciences Meeting and Exhibit [C]// Reno, Nevada, January 2008.
- [2] Juhee Lee etc. Optimization of Wings in Ground Effect Using Multi-Objective Genetic Algorithm [C]// 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, Florida, January 2010.