DOI: 10. 19416/j. cnki. 1674 – 9804. 2017. 02. 012

临界剪切应力系数曲线适用性研究 Research on Applicability of Critical Shear-stress Coefficients Curves

孙 吴 周良道 郭伟毅 李三平 / SUN Hao ZHOU Liangdao GUO Weiyi LI Sanping (上海飞机设计研究院,上海 201210)

(Shanghai Aircraft Design and Research Institute, Shanghai 201210, China)

摘 要:

曲板的屈曲问题与材料的弹性模量和泊松比有关,对于机身蒙皮材料 2060-T8E30,曲板临界剪切应力系数 曲线的适用性有待研究。基于 Abaqus 的线性静力分析中的 Buckle 算法,以机身蒙皮材料 2060-T8E30 建立 了多种构型曲板,对比有限元分析值和曲板临界剪切应力系数曲线,通过分析误差,得出结论:对于 2060-T8E30 材料,可以认为 d/h = 1.5 的 k_s (曲板临界剪切应力系数)曲线相比有限元分析值偏高,误差不大于 15%;d/h = 2 的 k_s 曲线相比有限元分析值偏高,误差不大于 20%;d/h = 3.5 的 k_s 曲线相比有限元分析值偏 高,误差不大于 35%。在飞机机身结构常用的参数,即 d/h = 3.5, $Z \leq 20$ 的情况下,当Z < 10 时, k_s 曲线的适 用性较好,误差不大于 10%;当 10 < $Z \leq 20$ 时, k_s 曲线相比有限元分析值偏高,误差不大于 20%。

关键词:曲板;临界剪切应力系数曲线;有限元;适用性

中图分类号:V215

文献标识码:A

[Abstract] The modulus and poisson's ratio of material is bound up with problems of buckling in curved panels. The material named 2060-T8E30 is applied in skins of fuselage panels. Applicability of critical shear-stress coefficients curves of curved panels with the material 2060-T8E30 needs research. Based on Abaqus Buckle method in linear statics analysis, dozens types of curved panels with the material 2060-T8E30 were modeled. A comparison between numerical value of finite element analysis and critical shear-stress coefficients curves was conducted. By analyzing errors, the results were attained that for the material 2060-T8E30, k_s (critical shear-stress coefficients of curved panels) curve of d/h = 1.5 is relatively higher than k_s^{FEA} (k_s of finite element analysis) and the error is below 15%. k_s curve of d/h = 2 is relatively higher than k_s^{FEA} and the error is below 20%. k_s curve of d/h = 3.5 is relatively higher than k_s^{FEA} . In case of normal parameters of fuselage structures of airplanes, as d/h = 3.5 and $Z \le 20$, k_s curve has a good applicability when Z < 10 but is relatively higher than k_s^{FEA} , with the error below 20%, when $10 < Z \le 20$.

[Keywords] curved panel; critical shear-stress coefficients curve; finite element; applicability

0 引言

结构稳定性在飞机结构设计中至关重要,尤其 是对于机身壁板,因为薄壁结构的静强度破坏中很 大一部分是由结构失稳引起的。然而科学研究和 工程实践发现,对于某些类型的结构,屈曲并不等 于失稳破坏,比如加筋壁板。机身壁板属于加筋曲 板,曲板的蒙皮很薄,蒙皮受剪屈曲之后会产生倾 斜的波纹^[1],并进入半张力场状态,对角张力系数 与临界剪切应力相关。

曲板的临界剪切应力与材料、厚度、轴向长度、 环向长度、曲率半径、边界支持条件,临界剪切应力 系数等相关。另外屈曲点的判定也有很多种选择, 不同的判定方式对初始缺陷的敏感度不同,从而使 试验结果有偏差。

为了验证 NACA TN 2661 的临界剪切应力系数曲线对于机身蒙皮材料 2060-T8E30 的适用性,选取了常用的曲板构型,用 HyperMesh 建立了有限元模型,利用 Abaqus 的 Buckle 线性静力分析得到曲板的临界剪切特征值,从而计算出临界剪切应力系数,然后对比 NACA TN 2661 的临界剪切应力系数曲线,分析有限元计算结果和工程曲线的误差。

1 曲板临界剪切应力的工程分析方法

根据 NACA TN 1348^[2],曲板的临界剪切应力 由式(1)给出:

$$\tau_{\rm cr} = k_{\rm s} \, \frac{\pi^2 D}{b^2 t} \tag{1}$$

式中:k_s为临界剪切应力系数,由壁板几何构 型和边界条件确定;D 为单位长度壁板的屈曲刚度 (N·mm); μ 为泊松比; b 为曲板轴向或环向长度的 较小值(mm); t 为曲板厚度(mm)。

图1 曲板较短边b

壁板的屈曲刚度 D 表示为:

$$D = \frac{Et^3}{12(1-\mu^2)}$$
(2)

根据 NACA TN 2661^[3],曲板的曲率参数 Z 表示为:

$$Z = \frac{h^2}{Rt} \sqrt{1 - \mu^2} \tag{3}$$

式中:E 为弹性模量(MPa);R 为曲板的曲率半径(mm)。

此处,*h* 为曲板环向长度(mm),即桁距;*d* 为曲 板轴向长度(mm),即框距,且*h* < *d*。

图 2 表示的是简支曲板的临界剪切应力系数-曲率参数的 *k*_s-*Z* 曲线。

临界剪切应力 τ_{cr} 可以写成^[4]:

$$\tau_{cr} = k_s \frac{\pi^2 E h^2}{12R^2 Z^2}$$
(4)

或

$$\tau_{cr} = \frac{k_s \pi^2 E}{12(1-\mu^2)} \left(\frac{t}{h}\right)^2$$
(5)

2 曲板的结构尺寸

目前,民用飞机机身蒙皮典型结构中,曲板的几 何构型为:曲率半径 *R* = 1 980 mm,厚度 *t* = 1.3 mm;选 取一系列不同的环向长度 *h* 和轴向长度 *d*,见表 1。

表1 曲板几何构型

d∕ mm	h/mm	d∕h	Ζ
110.77	73.85		2
175.50	117.00		5
247.50	165.00		10
350.29	233.53	1.5	20
655.33	436.89		70
783.27	522.18		100
1 356.67	904.45		300
147.70	73.85	2	2
234.00	117.00		5
330.00	165.00		10
467.05	233.53		20
873.78	436.89		70
1 044.37	522.18		100
1 808.89	904.45		300
258.47	73.85		2
409.50	117.00		5
577.50	165.00		10
817.35	233.53	3.5	20
1 529.11	436.89		70
1 827.64	522.18		100
3 165.57	904.45		300

2060-T8E30 材料的弹性模量 *E* = 72 400MPa, 泊松比μ=0.33。

d/h 选取了1.5、2、3.5,对应图2中给出的这三种取值的对应曲线;Z 选取了2、5、10、20、70、100、 300 这样的整数,图2中横坐标Z是对数刻度,Z 取 整数,易于确定其准确位置;纵坐标同样是对数刻 度,尽量选取纵坐标易于确定的点,减小观察引起 的误差。

3 有限元分析

3.1 有限元模型的建立

本文将矩形曲板简化为壳单元组成的二维模型,单元类型为 S4R,网格大小约 10mm,利用 HyperMesh平台对表 1 中的 11 种曲板构型分别做 有限元模型,用以计算不同构型曲板的临界剪切应 力。D = 175.5mm、h = 117mm、d/h = 1.5、Z = 5的曲板为例,其有限元模型如图 3 所示。

3.2 边界条件和加载方式

曲板的边界条件是四边简支,在 Abaqus 中使用 柱坐标系,约束设置为:四边 U1 = 0,并且一角 U2、 U3 = 0,另一角 U3 = 0。表示四边的径向位移为 0, 并且一角的环向和轴向位移为 0,另一角的轴向位 移为 0,如图 4 所示。

图4 曲板边界条件

曲板的加载方式是四边均布剪切载荷 q = 1N/mm, 如图 5 所示。

图 5 曲板加载方式

使用的分析步类型是"Buckle",特征值求解器 选用的是"Lanczos",可以快速求解屈曲载荷特征 值,易收敛^[5]。

3.3 有限元计算结果及误差分析

3.3.1 计算过程示例

以 *d* = 175.5、*h* = 117、*d*/*h* = 1.5、*Z* = 5 的曲 板为例,其一阶至三阶屈曲特征值的应力云图如图 6~图 8 所示。

图 6 特征值 = 78.341

图 7 特征值 = 89.152

图 8 特征值 = 162.05

选取图 6 的特征值 78.341 作为一阶屈曲载荷 特征值。计算临界剪切应力的有限元分析值 τ_{er}^{FEA} , 计算公式如下:

$$\tau_{cr}^{\text{FEA}} = \frac{\lambda q}{t} \tag{6}$$

式中:λ 为屈曲载荷特征值,q 为均布剪切载荷 kN/mm,t 为曲板厚度(mm)。

经计算得到示例曲板的临界剪切应力的有限 元分析值:

$$\tau_{\rm cr}^{\rm FEA}$$
 = 60. 26 MPa_o

再由式(5)推算出临界剪切应力系数 k_s^{FEA},经计算得:

$$k_{s}^{\text{FEA}} = 7.31_{\circ}$$

根据曲板的几何构型 d/h = 1.5 Z = 5,在图 2 中读取临界剪切应力系数 $k_s = 7.8$ 。

根据误差计算公式:

$$\Delta = \left(\frac{k_s^{FEA}}{k_s} - 1\right) \times 100\% \tag{7}$$

计算误差为:-6.3%。

3.3.2 d/h = 1.5 的曲板

由上面的计算过程示例,利用 Abaqus 有限元软件分别计算 d/h = 1.5,不同曲率系数 Z 的曲板临界剪切应力系数 k_s^{FEA} ,再根据图 2 读取其临界剪切应力系数 k_s ,计算误差百分比,结果见表 2。

表 2 曲板临界剪切应力系数计算值对比

Ζ	k_s (有限元)	k_s (工程方法)	误差
2	7.2	7.1	1.8%
5	7.3	7.8	-6.3%
10	7.8	8.9	-12.0%
20	9.5	11.0	-13.8%
70	20.5	21.0	-2.4%
100	24.6	27.0	-9.0%
300	54.9	55.0	-0.2%

经过观察分析,误差绝对值多数超过 5%,由 图 9 可以看出在 Z = 20 附近,k_s的有限元分析值 和工程方法曲线读取值偏离程度较大,工程方法 曲线读取值普遍高于有限元分析值。对于 2060-T8E30 材料,可以认为 d/h = 1.5 的曲板临界剪切 应力系数曲线相比有限元分析值偏高,误差不大 于 15%。

图 9 曲板临界剪切应力系数计算值对比

3.3.3 d/h =2 的曲板

利用 Abaqus 有限元软件分别计算 d/h = 2,不同曲率系数 Z 的曲板临界剪切应力系数 k_s^{FEA} ,再根据图 2 读取其临界剪切应力系数 k_s ,计算误差百分比,结果见表 3。

表 3 曲板临界剪切应力系数计算值对比

Z	$k_s(有限元)$	$k_s($ 工程方法)	误差
2	6.7	6.7	0.1%
5	7.0	7.0	-0.6%
10	7.2	8.0	-10.1%
20	8.4	10.0	-16.4%
70	16.5	20.0	-17.3%
100	22.3	24.5	-8.9%
300	43.9	50.0	-12.1%

经过观察分析,误差绝对值多数超过 5%,由图 10 可以看出在 Z > 10 时,k_s的有限元分析值和工程 方法曲线读取值偏离程度较大,工程方法曲线读取 值普遍高于有限元分析值。对于 2060-T8E30 材料, 可以认为 d/h = 2 的曲板临界剪切应力系数曲线相 比有限元分析值偏高,误差不大于 20%。

3.3.4 d/h = 3.5 的曲板

利用 Abaqus 有限元软件分别计算 d/h = 3.5, 不同曲率系数 Z 的曲板临界剪切应力系数 k_s^{FEA} , 再

图 10 曲板临界剪切应力系数计算值对比

根据图2读取其临界剪切应力系数*k*_s,计算误差百分比,结果见表4。

Z	$k_{s}(有限元)$	$k_{s}($ 工程方法)	误差
2	5.9	6.0	-2.1%
5	6.5	6.4	2.0%
10	6.5	7.0	-7.3%
20	7.7	9.1	-15.1%
70	12.6	18.0	-29.8%
100	15.5	22.5	-31.1%
300	38.8	45.0	-13.8%

表4 曲板临界剪切应力系数计算值对比

经过观察分析,误差绝对值多数超过 5%,由图 11 可以看出在 Z > 20 时,k_s的有限元分析值和工程 方法曲线读取值偏离程度较大,工程方法曲线读取 值普遍高于有限元分析值。对于 2060-T8E30 材料, 可以认为 d/h = 3.5 的曲板临界剪切应力系数曲线 相比有限元分析值偏高,误差不大于 35%。

图 11 曲板临界剪切应力系数计算值对比

根据 NACA TN 1348,在其试验验证章节中,试验件几何构型分布在 Z > 100 的范围内,试验获得

的临界剪切应力系数普遍低于临界剪切应力系数 曲线。这说明本文中有限元分析值普遍低于临界 剪切应力系数曲线的现象是有试验支持的,曲板临 界剪切应力系数的有限元分析值 k_s^{FEA} 更加接近试 验值。

3.3.5 飞机常用曲板构型

由于飞机机身结构常用的 d/h 值为 3.5,曲率 参数 Z 在 20 以下,为了验证 $d/h = 3.5, Z \leq 20$ 时的 临界剪切应力系数曲线的适用性,选取 $d/h = 3.5, Z \leq 20$ 时的 Z = 5~20 的一部分整数,计算其对应曲板的临界剪 切应力系数 k_s ,与临界剪切应力系数曲线读取的 k_s 对比,分析误差。曲板构型如表 5,计算结果见表 6。

表 5 $d/h = 3.5, Z = 5 \sim 20$ 的曲板构型

$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	d∕mm	h∕mm	d/h	Ζ
448.0 128.0 6 483.4 138.1 7 517.0 147.7 8 548.5 156.7 9 577.5 165.0 10 633.1 180.9 12 683.8 195.4 14 731.1 208.9 16 775.4 221.5 18 817.3 233.5 20	409.5	117.0	3.5	5
483.4 138.1 7 517.0 147.7 8 548.5 156.7 9 577.5 165.0 10 633.1 180.9 12 683.8 195.4 14 731.1 208.9 16 775.4 221.5 18 817.3 233.5 20	448.0	128.0		6
517.0 147.7 8 548.5 156.7 9 577.5 165.0 10 633.1 180.9 12 683.8 195.4 14 731.1 208.9 16 775.4 221.5 18 817.3 233.5 20	483.4	138.1		7
548.5 156.7 9 577.5 165.0 10 633.1 180.9 12 683.8 195.4 14 731.1 208.9 16 775.4 221.5 18 817.3 233.5 20	517.0	147.7		8
577.5165.010633.1180.912683.8195.414731.1208.916775.4221.518817.3233.520	548.5	156.7		9
633.1 180.9 12 683.8 195.4 14 731.1 208.9 16 775.4 221.5 18 817.3 233.5 20	577.5	165.0		10
683.8195.414731.1208.916775.4221.518817.3233.520	633.1	180.9		12
731.1208.916775.4221.518817.3233.520	683.8	195.4		14
775.4 221.5 18 817.3 233.5 20	731.1	208.9		16
817.3 233.5 20	775.4	221.5		18
	817.3	233.5		20

表6 Z = 5~20 的曲板临界剪切应力系数计算值对比

Ζ	$k_s(有限元)$	$k_s($ 工程方法)	误差
5	6.5	6.4	2.0%
6	6.4	6.4	0.5%
7	6.5	6.5	0.1%
8	6.5	6.7	-2.9%
9	6.6	7.0	-5.7%
10	6.5	7.0	-7.3%
12	6.9	7.6	-8.9%
14	7.1	8.0	-11.7%
16	7.4	8.4	-12.4%
18	7.6	8.9	-14.7%
20	7.9	9.3	-15.1%

经过观察分析,*Z*≤20时,(*k*_s-*k*_s^{FEA})递增,误差 绝对值范围0.1%~15.1%。

当 $10 < Z \leq 20$ 时,误差绝对值多数大于10%, k_s 相对 k_s^{FEA} 偏高。对于2060-T8E30材料,可以认为d/h = 3.5的曲板临界剪切应力系数曲线相比有限

元分析值偏高,误差不大于20%。

当 Z < 10 时,误差绝对值不超过 10%。对于 2060-T8E30 材料,可以认为 d/h = 3.5 的曲板临界 剪切应力系数曲线的适用性较好,误差不大 于 10%。

4 结论

本文基于 Abaqus 的线性静力分析中的 Buckle 算法,对蒙皮材料 2060-T8E30 建立了多种构型曲 板,进行了有限元分析和工程方法分析的对比,验 证了曲板临界剪切应力系数曲线的适用性。

对 d/h = 1.5、d/h = 2、d/h = 3.5 的三种 典型 d/h 的曲板,每种分别选取 Z = 2、5、10、 20、70、100、300 七种曲率参数进行模型构建,验 证了 21 种构型的曲板临界剪切应力系数曲线的 适用性。

结果表明:对于 2060-T8E30 材料,可以认为 d/h = 1.5的曲板临界剪切应力系数曲线相比有限元 分析值偏高,误差不大于 15%;d/h = 2的曲板临 界剪切应力系数曲线相比有限元分析值偏高,误差 不大于 20%;d/h = 3.5的曲板临界剪切应力系数 曲线相比有限元分析值偏高,误差不大于 35%。

为了进一步验证在飞机机身结构常用的参数,即 $d/h = 3.5, Z \leq 20$ 时曲板临界剪切应力系数曲线的适用性,增加了 $d/h = 3.5, Z = 5 \sim 20$ 的11种构型的曲板,进行了屈曲计算和误差分析。

结果表明:对于 2060-T8E30 材料,在飞机机身 结构常用的参数,即 $d/h = 3.5, Z \leq 20$ 的情况下, 当 Z < 10 时,d/h = 3.5 的曲板临界剪切应力系数 曲线的适用性较好,误差不大于 10%;当 $10 < Z \leq 20$ 时,d/h = 3.5 的曲板临界剪切应力系数曲线相比 有限元分析值偏高,误差不大于 20%。

参考文献:

[1] 崔德刚. 结构稳定性设计手册[M]. 北京: 航空工业出版社,1996.

[2] Batdorf S B, Stein M, Schildcrout M. Critical shear stress of curved rectangular panels [R]. NACA TN 1348, 1947.

[3] Khun P, Peterson J P, Levin L R A. A summary of diagonal tension part I: methods of analysis [J]. NACA TN 2661, 1952.

[4] 牛春匀,冯振宇,程小全,等. 实用飞机结构应力分析及 尺寸设计[M]. 北京:航空工业出版社,2009.

[5] 江丙云,孔祥宏,罗元元. ABAQUS 工程实例详解[M]. 北京:人民邮电出版社,2014.

作者简介

孙 昊 男,硕士。主要研究方向:机体强度设计;E-mail: sunhao2@comac.cc

周良道 男,博士,研究员。主要研究方向:飞机设计; Email: zhouliangdao@ comac. cc

郭伟毅 男,本科,高工。主要研究方向:机体强度设计;Email: guoweiyi@ comac.cc

李三平 男,博士,研究员。主要研究方向:有限元技术;Email: lisanpingcomac.cc