耐高温苯并恶嗪的合成与表征

白会超 王继辉 冀运东

(武汉理工大学材料科学与工程学院,武汉 430070)

文 摘为了提高苯并恶嗪的耐高温性能,合成了含醛基的苯并恶嗪中间体。采用溶剂两步法合成含醛基的苯并恶嗪中间体,利用红外光谱和核磁氢谱对其结构进行表征,同时利用 DSC对其固化反应过程进行了研究,通过 TGA对其耐热性能进行测试。结果表明含醛基的苯并恶嗪中间体在氮气保护下,800 的残碳率高达 65.63%,与普通的苯并恶嗪树脂相比,残碳率提高了 20%,耐热指数为 221.09 。综上可知,醛基的引入可以有效地提高苯并恶嗪树脂的耐热性能和热稳定性能。

关键词 复合材料,苯并恶嗪,溶剂法合成,耐热性

Synthesis and Characterization of High Temperature Resistant Benzoxazine

Bai Huichao Wang Jihui Ji Yundong

(School of Material Science and Technology, Wuhan University of Technology, Wuhan 430070)

Abstract To improve the high temperature resistance of benzoxazine, aldehyde-functionalized benzoxazine was synthesized Aldehyde-functionalized benzoxazine was prepared via solvent and two-step method and its molecular structure was confirmed by FTIR and ¹ HNMR. Cure behavior of aldehyde functionalized benzoxazine was investigated by DSC. At last, measuring by TGA indicated that aldehyde functionalized benzoxazine achieved a char yield as high as 65. 63% at 800 under nitrogen environment which is 20% higher than that of the normal benzoxazine and the thermal resistance index was 221. 09 . It possesses good thermal resistance and thermal stability.

Key words Composite, Benzoxazine, Solvent, Thermal resistance

1 前言

苯并恶嗪树脂在保留了传统酚醛树脂的耐高温 特性、阻燃性能、良好的电性能和力学性能的同时,又 克服了传统酚醛树脂的一些缺点,如:生产过程中无 小分子放出,合成过程中不需要强酸或强碱作催化 剂,体积收缩率接近零,有良好的尺寸稳定性^[1-4]。 尽管聚苯并恶嗪树脂有很多优点,但是它们形成的交 联网络结构的密度很低,其原因是强烈的氢键缔合作 用限制了分子链运动的灵活性,从而阻止了网络结构 的拓展^[3]。所以,普通苯并恶嗪的残碳率不高^[5]。 通过实验,测得由苯酚、甲醛和苯胺合成的普通苯并 恶嗪在 N₂保护下,800 的残碳率为 42%。但是,聚 苯并恶嗪树脂还有灵活的分子设计性,可以根据应用 的需要,选择不同的酚源或者胺源,合成出各种结构 的苯并恶嗪。因此,在传统的苯并恶嗪分子上引入其 他的反应性基团,可以进一步改善其固化物的综合性 能。结果表明,含有多官能团的聚苯并恶嗪树脂的力 学及耐热性能都有明显提高^[6~10]。本文通过对羟基 苯甲醛、多聚甲醛和苯胺合成含醛基的苯并恶嗪,对 产物的结构和组成进行了分析,并研究了单体的热固 化行为以及其耐热性能。

- 2 实验
- 2.1 原料

对羟基苯甲醛、苯胺,天津市科密欧化学试剂有 限公司;甲醛,湖北大学化工厂;三氯甲烷和二氯甲 烷,上海试一化学试剂有限公司;以上均为分析纯。 氢氧化钠,工业级,天津市博天化工有限责任公司。

2.2 性能测试

(1)红外光谱分析 (FTℝ):用 N ICOLOT - 60SXB 傅里叶红外光谱仪。样品制备:氯化钾涂膜,溴化钾 压片。

(2)核磁共振氢谱分析 (H - NMR):用 VG -

收稿日期: 2007 - 09 - 20;修回日期: 2007 - 11 - 22

作者简介:白会超,1982年出生,硕士,主要从事耐高温树脂基体等方面的研究工作。 E - mail: feixiang11305@163.com 宇航材料工艺 2008年 第 3期

ZAB - 3F - HF核磁共振氢谱仪,测试条件:溶剂为氘 代三氯甲烷,内标为 TMS。

(3)黏度测试:用 NDJ - 8S数显黏度计,上海天 平仪器厂。测试条件:油浴,自动控温仪控制温度 (自制)。

(4)凝胶时间测试:用铁板拉丝法。

(5) DSC与 TGA测试:用 Pyris 1 DSC;氮气保护, 流量为 50 mL/min,升温速率为 5 /min,测试温度从 室温 ~ 800 。

2.3 合成方法

将 55.890 g苯胺和 100 mL 三氯甲烷加入处于 冰水中的三口烧瓶中,搅拌,用 1 mol/L 的氢氧化钠 调节 pH = 10.00,逐滴滴加甲醛 97.400 g,滴加完毕 以后继续搅拌 10 min,测试 pH = 8.76。随后加入对 羟基苯甲醛 73.300 g,开始升温至 65 。保温回流 5 h。然后开始抽真空脱水,在 65 、-95 kPa脱溶剂 及反应生成的水,直至无气泡产生,倒出,得到金黄色 液体。

将得到的液体溶于 50 mL二氯甲烷中,用 1 mol/ L的氢氧化钠洗涤,再用去离子水冲洗 3次。分液, 然后在真空干燥箱中干燥 12 h(40),产率为 85%。

2.4 固化制度

先将含醛基的苯并恶嗪在烧杯中加热至 90 使 其变成低黏度的流体,然后倒入预热的涂有脱模剂的 模具中,在 100 抽真空保持 2 h,然后升温至 120 保温 2 h,接着升温至 130 保温 2 h,然后再升温至 140 保温 2 h,最后升温至 155 保温 2 h。

3 结果与讨论

3.1 实验原理

以对羟基苯甲醛、甲醛和苯胺为原料,采用溶剂 两步法合成出含有醛基的苯并恶嗪,其反应式为:

3.2 单体结构的表征

— 46 —

3.2.1 FT IR 对单体结构的表征

图 1为反应生成的含醛基苯并恶嗪的 FTℝ图 谱。醛基中的 C—H伸缩振动与该 C—H键的倍频 发生振动耦合 (费米共振),在 2 833和 2 740 cm⁻¹处 出现两个中等强度的吸收峰,1 683 cm⁻¹为 C= O键 的伸缩振动吸收峰。1 330 cm⁻¹为 C—O—C不对称 伸缩振动特征峰,1 029 cm⁻¹为 C—O—C对称伸缩 振动特征峰,1 157 cm⁻¹为 C—N—C不对称伸缩振 动特征峰,945 cm⁻¹为恶嗪环特征峰,1 238 cm⁻¹为 恶嗪环上 CH₂ 振动特征峰,上述五个特征吸收峰的 出现说明合成产物中恶嗪环的存在。1 600、1 498和 1 450 cm⁻¹为苯环的骨架振动吸收峰。828、758和 695 cm⁻¹为苯环上— C—H的弯曲振动的特征峰。

3.2.2 单体的¹H-NMR测试

图 2为含醛基苯并恶嗪的核磁共振氢谱谱图。 =4.685为Ar—CH₂—N—Ar的亚甲基的质子峰, = 5.445为Ar—O—CH₂—N—Ar的亚甲基的质子峰。 上述两个峰面积的比值为 9.76/9.55,约为 1,说明上 述两个峰为恶嗪环的特征峰,合成产物中恶嗪环的存 在。 =6.843~7.266为苯环上的质子峰。 =9.816 为醛基上的质子峰。

3.3 黏度测试

图 3为含醛基苯并恶嗪树脂在 90 黏度随时间 的变化曲线,当温度到达 90 的瞬间开始计时,150 min停止记录。由图可以看出,含醛基苯并恶嗪树脂 在 90 的黏度很低,从 5~80 min都在 0.5 Pa·s以 下。黏度增长率根据公式:

$$\frac{t^2}{t}$$
(1)

宇航材料工艺 2008年 第3期

由于树脂的黏度从 10 min开始趋于稳定,所以 从 15~150 min,树脂黏度增长率为: 2 9 mPa·s/min。 综上可以看出,该树脂有很好的加工性并且有较长的 使用期。

3.4 凝胶时间测定

用平板拉丝法,测定含醛基苯并恶嗪树脂的凝胶 时间,其结果见表 1。

表 1 树脂在不同温度的凝胶时间

Tab. 1 Gel times of resin at different temperature

测试温度 /	凝胶时间 / s	
130	419	
140	335	
150	294	
160	193	

根据 Fbry的凝胶化理论,当含有多官能团的单体 参与的缩聚反应进行到一定程度时,凝胶化时间可以表 征热固性树脂由线性结构向体型大分子转化过程。固 化树脂体系在凝胶点时,化学转化率是一定的,与反应 温度和实验条件无关。根据阿仑尼乌斯方程,得 $\ln t$ gel = $\ln t_0 + E_a / (RT)$,以温度倒数 (1/RT)为横坐标,以凝 胶化时间得自然对数为纵坐标作图见图 4。

根据上述理论,计算树脂的凝胶化反应的活化能

宇航材料工艺 2008年 第 3期

为 35. 409 kJ/mol

3.5 含醛基苯并恶嗪的 DSC测试

图 5为未提纯的含醛基苯并恶嗪热固化的 DSC 曲线,可以看出,该苯并恶嗪的热固化峰只有一个,热 固化峰的起始点温度在 128 ,峰值温度为 153.8 , 结束点的温度为 182.8 ,比不含其他官能团的单环 苯并恶嗪的热固化峰的位置明显前移。这说明醛基 的存在促进了苯并恶嗪的热固化,其中的反应机理有 待于进一步的深入研究。

3.6 聚苯并恶嗪树脂的 TGA测试

图 6是含醛基的苯并恶嗪树脂固化以后的 TGA 曲线,可以看出, T_{d}^{5} 为 288 , T_{d}^{10} 为 397 ,最终的碳 化率为 65.63%。

树脂的热稳定性的好坏,直接影响材料的高温性 能以及材料的使用寿命。因此,还应该考察固化树脂 的热稳定性。按照统计法,计算公式:

 $T_{c} = 0.49 [T_{d}^{5} + 0.6(T_{d}^{30} - T_{d}^{5})]$ (2) 式中: T_{c} 为耐热温度指数, T_{d}^{5} 为失重 5%时的温度, T_{d}^{30} 为失重 30%的温度。由上式计算含醛基苯并恶 嗪树脂的耐热指数为: 221.09 。

综上可得,含醛基的苯并恶嗪由于醛基的引入大 大提高了树脂的交联密度,进而提高了树脂耐热性 能。含醛基的苯并恶嗪树脂固化产物具有优良的耐 烧蚀性能和热稳定性能,适合作为高性能复合材料的

— 47 —

基体树脂使用。

4 结论

利用对羟基苯甲醛、甲醛和苯胺合成了含醛基的 苯并恶嗪树脂,通过研究得出如下结论:

(1)用红外光谱和核磁氢谱对其结构进行表征, 证实了该树脂结构中存在恶嗪环;

(2)含醛基苯并恶嗪树脂 90 的黏度在 1 h内
低于 0.5 Pa·s, 15~150 min内黏度增长率为: 2.9
mPa·s/min,具有良好的加工性能;

(3)计算出该树脂凝胶化反应活化能为 35.409 kJ/mol,通过 DSC测试,发现含醛基的苯并恶嗪树脂 热固化温度较低,有利于成型工艺;

(4) TGA测试结果表明,该树脂在 N_2 保护下 T_d^5 为 288 , T_d^{10} 为 397 ,最终的碳化率为 65. 63%,并 计算其耐热指数为 221. 09 。

综上可知,醛基的引入可以有效地提高苯并恶嗪 树脂的耐热性能和热稳定性能。

参考文献

1 Ning X, Ishida Hatsuo Phenolic materials via ring-opening polymerization: symthesis and characterization of bisphenol-A based benzoxazines and their polymers Journal of Polymer Science: part B, 1994; 32: 1 121 ~ 1 129

2 Ishida Hatsuo, Houglas I Allen Physical and mechanical

characterization of near-zero shrinkage Polymer Science: part B, 1996; 34: 1 019 ~ 1 030

3 Ishida Hatsuo, Hong Yee Low. A study on the volumetric expansion of the benzoxazines-based phenolic resin Macromolecular, 1997; 30: 1 099 \sim 1 106

4 Ishida H, Allen D J. Physcial and mechanical chracerization of near-zero shrinkage polybenzoxazine Polymer Science: Part B, 1996; 34: 1 019

5 Hatsuo Ishida, Sharon Ohba Synthesis and characterization of maleim ide and norbomene functionalized benzoxazines Polymer, 2005; 46: 5 588 ~ 5 595

6 顾宜,田巧等.耐热性苯并恶嗪树脂复合物及其制备 方法和用途. CN 1884376A

7 张炳伟,徐日伟,丁雪佳.一种新型苯并恶嗪的合成与 表征及其热性能的研究.热固性树脂,2004;19(2):1~4

8 Kin H J, Brunovska Z, Ishida H. Systhesis and thermal characterization of polybenzoxazines based on acetylene-functional monomers Polymer, 1999; 40: 6 565 ~ 6 573

9 顾宜,钟赤峰,谢美丽.用于 R™成型工艺的苯并恶 嗪树脂及其复合材料.复合材料学报,2000;17(4):32~37

10 陈红,徐日伟,余鼎声.萘恶嗪的合成及其固化性能的研究.热固性树脂,2002;17(3):1~3

(编辑 吴坚)

(上接第 39页)

参考文献

1 李贺军. 航空耐高温 C/C复合材料发展现状和存在 问题的研究. 见:中国航空学会航空百年学术论坛复合材料分 论坛暨第六届山东复合材料学术年会论文集. 2003: 155~159

2 巩前明,黄启忠,黄伯云.炭化压力对沥青成焦形貌及航空刹车用 C/C复合材料浸渍增密效果的影响.新型炭材料,2002;17(2):23~27

3 苏君明,崔红.新型针刺碳布 C/C复合材料的结构与 性能.新型炭材料,2000;15(2):11~14

4 马伯信. C/C复合材料工艺基础. 2002: 103~105

5 Michio Inagaki, Kang Feiyu Carbon Materials Science and Engineering-From Fundamentals to Applications, 2006: 97

6 Manocha L M. Thermophysical properties of densified pitch based carbon/carbon materials - . Bidirectional compos-

ites Carbon, 2005: 1 ~ 2

7 苏红,姚冬梅,闫联生.一种新型滑撬用针刺 C/C复合 材料制备与性能研究.固体火箭技术,2006;29(6):465

8 黄剑. 沥青碳的微观结构及其对性能影响的研究. 航 天动力技术研究院硕士论文, 2007: 96~97

9 赵建国,李克智,李贺军等.C/C复合材料热膨胀性能的研究.材料热处理学报,2006;27(6):1~3

10 孙乐民,李贺军.沥青基 C/C复合材料压力浸渍 —炭 化机理分析.西北工业大学学报,2001;19(1):88~92

11 邹林华,黄伯云. C/C复合材料的热导率.中国有色 金属学报,1997;7(4):133~134

(编辑 吴坚)