双损耗Al₂O₃基多孔吸波材料的制备及其吸波性能

乔宇爆1 李红伟^{1,2} 张利琪1 吉雪丽1 周 亮^{1,2}

(1 长安大学材料科学与工程学院,西安 710061)(2 长安大学交通铺面材料教育部工程研究中心,西安 710061)

文 摘 基于片状Al₂O₃陶瓷互锁结构强度高的特点,制备出夹杂石墨的高气孔率的Al₂O₃多孔陶瓷,并通过 原位还原在多孔骨架中制备出Ni 微粒,形成一种轻质的双损耗陶瓷基吸波材料。通过XRD、FE-SEM和EDS研 究了还原温度对多孔吸波材料的组成、微观形貌、元素分布和吸波性能的影响。结果表明,还原温度升温至700℃ 可将多孔网络中Ni完全还原,形成以堆叠互锁Al₂O₃为基,夹杂片状石墨和孔表面覆盖Ni 微粒的双损耗轻质吸 波材料。当复合材料厚度为6.5 mm时,最小反射损耗为-35.01 dB,有效吸收带宽达到1.75 GHz。片状Al₂O₃锁 定的石墨片构筑的导电网络,Ni微粒与基体之间的极化效应等共同促进复合材料良好的微波吸收性能。

关键词 微波吸收,原位还原,氧化铝,多孔陶瓷,镍微粒

中图分类号:TM25 DOI:10.12044/j.issn.1007-2330.2023.05.007

Fabrication and Microwave Absorbing Performance of Porous Al₂O₃ Ceramic With Double Loss of Electromagnetic Wave

QIAO Yuxi¹ LI Hongwei^{1,2} ZHANG Liqi¹ JI Xueli¹ ZHOU Liang^{1,2}

(1 School of Materials Science and Engineering, Chang'an University, Xi'an 710061)

(2 Engineering Research Center of Transportation Materials of Ministry of Education, Chang'an University, Xi'an 710061)

Abstract Based on the high strength of flake Al_2O_3 ceramic interlocking structure, Al_2O_3 porous ceramics with high porosity and graphite were prepared, and Ni particles were prepared by in-situ reduction in the porous skeleton to form a lightweight double-loss ceramic-based absorbing material. The effects of reduction temperature on the composition, microstructure, element distribution and microwave absorption properties of porous absorbing materials were studied by XRD, FE-SEM and EDS. Results concluded the following. The results show that Ni on the framework can be completely reduced when the temperatures is up to 700 °C. The composite with a double loss function is composed of an interlocking Al_2O_3 matrix with graphite flakes embedded in it and Ni particles on the surface of pores. As the thickness of the composite is 6.5 mm, the reflection loss (RLmin) value is 35.01 dB and the effective bandwidth ($RL \leq 10 \text{ dB}$) is 1.75 GHz.Microwave absorption can be attributed to the conductive network formed by graphite flakes between flaky Al_2O_3 grains, as well as to the good impedance matching and polarization effect caused by the Ni particle-matrix interface.

Key words Microwave absorption, In-situ reduction, Alumina, Porous ceramics, Ni particle

0 引言

日益广泛应用的各类电子设备丰富和便利了人 们的现代生活,与此同时也造成了趋于严重的电磁 污染,对人们的身体健康和精密电子设备的安全使 用产生巨大的危害^[1-4]。为了防护电磁污染,研究人 员开发各类吸波材料,通过不同的损耗机制将吸收 的电磁波直接消耗或转化为其他形式的能量,达到 电磁衰减的目的。大量的理论和实验研究表明,理 想的吸波材料需要具备轻质、有效吸收频带宽、厚度 薄且吸收强等特点^[5]。

通常地,吸收剂是影响吸波材料性能的关键,基 于微波损耗机理可分为介电损耗和磁损耗两类。介

收稿日期:2022-03-30

基金项目:长安大学中央高校基础研究项目(No. 300102310110);长安大学创新团队项目(No. 300102311403);长安大学2020大学生创新创 业训练计划项目(S202010710176X)

第一作者简介:乔宇爔,1994年出生,硕士,主要从事多孔陶瓷吸波方面的研究工作。E-mail:qiaoyuxi0607@163.com 通信作者:李红伟,1980年出生,讲师,主要从事先进材料结构设计及优化工作。E-mail:lhw@chd.edu.cn

电吸收剂中碳材料的介电性优异,且其密度低、化学稳定性良好,广泛应用于吸波材料,但是其较高的电导率易形成电磁波的反射^[6],导致阻抗失配;铁磁性金属及其氧化物是优良的磁损耗型吸收剂,但其密度高在一定程度上限制了它们的应用^[7-8]。单组分吸收剂吸收强度低、密度高等缺点往往不能满足效能要求。研究发现,介电损耗和磁损耗吸收剂协同使用可获得更加良好阻抗匹配和高效电磁衰减吸波材料,如 MWCNTs/Fe/Co/Ni^[9]、ZnO/CNWs^[10]、Fe@CNT/SiC^[11]。设计制备出轻质、吸波效能好、成本低的吸波材料仍是一项巨大的挑战。

多孔陶瓷载体具有轻质的特点,大量的孔隙可 以降低陶瓷的介电常数,平衡了吸波材料与空气之 间的阻抗间隙^[12-14],形成的非均匀界面导致入射电 磁波的多次反射和散射;如CNW/Si₃N₄^[15]、CNWs-SiO₂/3Al₂O₃·2SiO₂^[16]等多孔吸波材料均显示出优异 的吸波性能。Al₂O₃陶瓷具有强度高、硬度高、耐高 温、化学惰性大、介电损耗低等特点,在一定条件下 可烧结出片状的Al₂O₃晶粒,微观上形成堆叠互锁结 构,兼具高气孔率和高强度^[17];同时,片状结构有利 于负载微纳米吸波剂和电磁波在孔中的反射,有望 成为一种较为理想的微波吸收载体。本文将具有物 理化学稳定性好、密度低、成本低、来源广泛的鳞片 石墨(FG)^[18]与片状晶构成多孔Al₂O₃陶瓷复合,作为 介电吸波剂锁定在基体中,通过浸渍法调整碳热还 原温度将磁性成分 Ni 颗粒负载于片状多孔 Al₂O₃网 络结构上,讨论形成的双损耗轻质复合结构对吸波 性能的影响。

1 实验

1.1 样品制备

为了制备出高气孔率的Al₂O₃陶瓷支撑体,以粒 径 500 nm 的商用 α -Al₂O₃为初始原料,并加入 4%(w) 的 AlF_{1} 和 10%(w)的 TEOS,以引入F和Si元素抑制高 温下Al2O3晶体(0001)面的生长,形成片状晶互锁的 Al₂O₃陶瓷。随后添加适量的水和无水乙醇,湿混12 h,干燥并研磨得到白色粉料。将上述粉料与3%(w) 的鳞片石墨粉(粒径40μm)混合均匀,另加入少量 PVA 黏结剂模压得到 24 mm×11 mm×3 mm 的坏体, 干燥后将坏体置于密封的刚玉坩埚中,缓慢升温至 1 350 ℃并保温 3 h,得到多孔陶瓷,记作 C/Al₂O₃。将 可溶性淀粉、Ni(NO₃),·6H₂O和水以质量比1:10:31 溶解后混合均匀形成溶液,将多孔样品置入该溶液 中真空浸渗 30 min,干燥后将试样在Ar和少量H,的 混合气氛下以5℃/min分别升温至300、500和 700 ℃,各保温2h,不同温度处理后的样品标记为Ni/ C300、Ni/C500和Ni/C700,以备测试。制备流程示意 图如图1所示。

图1 双损耗型多孔 Al₂O₃陶瓷的制备过程示意图

Fig. 1 Schematic illustration of preparation of porous Al₂O₃ absorbing ceramic with double loss of electromagnetic wave

1.2 表征

烧结后的各试样采用阿基米德法来测定其体积 密度和气孔率;试样的物相由X射线衍射仪(D8 ADVANCE,德国,Bruker)表征,测试条件为Cu靶,入 射光 λ =0.1546nm,管电压和管电流分别为40kV和 40mA;试样喷金后,其断口微观形貌则通过FE-SEM(S4800,日本,HITACHI)观测,测试条件为15 kV和10mA。试样加工成矩形(22.86mm×10.16 mm),通过矢量网络分析仪(E8362 BPNA,美国, Agilent)采用矩形波导法测量出各复合材料在X波段 的复介电常数和复磁导率。根据传输线理论,计算 复合涂层的反射损耗(RL)、输入阻抗(Z_{in})的公 式为^[19-20]:

宇航材料工艺 http://www.yhclgy.com 2023年 第5期

$$RL(dB) = 20lg \left| \left(Z_{in} - Z_0 \right) / \left(Z_{in} + Z_0 \right) \right|$$
(1)

$$Z_{\rm in} = Z_0 \sqrt{\mu_{\rm r}/\varepsilon_{\rm r}} \tanh\left[j\left(2\pi f d/c\right)\sqrt{\mu_{\rm r}\varepsilon_{\rm r}}\right] \qquad (2)$$

式中, Z_0 为自由空间的输入阻抗, μ_r 和 ε_r 为吸收器的 相对磁导率和介电常数,f为入射波的频率,c为自由 空间的光速,d为吸收器的厚度。

2 结果和讨论

2.1 双损耗多孔材料的形貌和相组成

图 2 为片状 C/Al₂O₃基体和不同温度还原后的 Ni/ C 复合材料的 XRD 图。通过 1 350 ℃密封条件下的 高温烧结,烧成的样品主要成分为α-Al₂O₃(PDF#99-0036)和石墨(PDF#41-1487)。浸渍含镍的溶液后, 当还原温度为 300 ℃时,在 2θ 为 37.3°、43.3°、62.8°

— 51 —

等处出现的衍射峰表明,形成了 NiO (PDF#47-1049)。这归因于硝酸镍的分解,其分解的过程为^[21]:

 $2Ni(NO_3)_2 \cdot 6H_2O(s) \rightarrow 2NiO(s) + 4NO_2(g) + 12H_2O(g) + O_2(g)$ (3)

当还原温度升高至500℃,则出现了44.3°, 51.7°和76.2°的衍射峰,其对应于Ni单质(PDF#04-0850)的峰。表明500℃可将部分NiO和来自于淀粉 裂解的残余C发生碳热还原形成Ni;还原温度升高 到700℃,NiO的衍射峰完全消失,Ni峰增强,表明此 时NiO被完全还原为Ni,相关反应为^[22]:

 $NiO(s)+C(s) \rightarrow Ni(s)+CO(g)$

(4)

图 2 C/Al₂O₃和在不同温度还原后 Ni/C 复合材料的 XRD Fig. 2 XRD patterns of C/Al₂O₃ and Ni/C composites prepared at different reduction temperature

图 3 为 C/Al₂O₃基体和不同温度还原后复合材料的断口微观形貌。

注:(a)C/Al₂O₃;(b)Ni/C300;(c)Ni/C500;(d)Ni/C700。 图 3 C/Al₂O₃和不同温度还原后Ni/C复合材料的断口SEM图 Fig. 3 SEM images of the fracture of C/Al₂O₃ and Ni/C composites prepared at different reduction temperature

其中图3(a)显示了混有石墨的片状C/Al₂O₃基体形 貌,基体中Al₂O₃呈现六角形的片状,较大晶粒的Al₂O₃ 堆叠互锁,石墨片被嵌于片状Al₂O₃间。不同温度还原 - 52 - Ni后的复合材料如图3(b)-(d)所示。图3(b)和图3(c) 中,近纳米级颗粒覆盖了片状Al₂O₃晶粒表面,分布在 Al₂O₃形成的孔隙表面。升高了还原温度,球状颗粒尺 寸增加。结合XRD分析,还原温度较低时,仅裂解得到 极细小的NiO颗粒;随着还原温度的升高,部分NiO还 原成细小的Ni颗粒;当温度提高到700℃时,能够将Ni 全部还原,但较高的温度使得Ni球状颗粒长大较快,甚 至接近1μm。表1中列出了Ni/C复合材料的气孔率和 体积密度,并与其他材质多孔吸波材料进行对比^[23-25]。 值得注意的是,碳热还原处理后样品密度降低而开气 孔率显著提高。

表1 轻质吸波陶瓷材料的密度和开气孔率 Tab.1 Densities and porosities of lightweight microwave absorbing ceramics

种类	气孔率/%	体积密度/g·cm ⁻³	参考文献
$Sc_2Si_2O_7$	33.00	2.10	[23]
$\rm Si_3N_4$	40.00	1.97	[24]
$SiCN-Si_3N_4$	43.05	-	[25]
C/Al ₂ O ₃	45.54 ±1.62	2.07 ± 0.16	本工作
Ni/C300	48.01 ± 1.56	1.97 ± 0.04	本工作
Ni/C500	53.85 ± 3.76	1.77 ± 0.21	本工作
Ni/C700	58.38 ± 1.10	1.50 ± 0.16	本工作

图 4 Ni/C700 复合材料的 EDS 元素分布图 Fig. 4 EDS elemental mapping images of Ni/C700 composite

为了分析浸渍还原形成的双损耗轻质材料的元素分布特征,对Ni/C700复合材料的EDS分析如图4 所示。O和Al在Ni/C700复合材料中的元素分布高 度一致,因其共同来自于Al₂O₃晶体。Ni元素的分布 较为均匀,主要沿着片状Al₂O₃分散,与C元素分布却 不相似,表明浸渍沉积原位还原的Ni吸收剂附着在 基体上且分布均匀,同时掺杂的石墨吸收剂可以在

宇航材料工艺 http://www.yhclgy.com 2023年 第5期

烧结制备中得到保留;石墨网络可以为电子的传输 提供导电路径,有利于高导电损耗;细小的Ni颗粒则 由于大量的界面形成较优的磁损耗。分两步制备双 吸收剂的策略,则有利于吸波性能的调控优化。

2.2 电磁性能

介电常数实部(ε')和虚部(ε'')分别代表材料对 电磁波的储存容量和损耗能力^[26-27]。如图5所示,片 状C/Al₂O₃基体拥有较高的介电常数实部和虚部。随 着还原温度从300℃升高至700℃,Ni/C复合材料的 实部和虚部的平均值分别从3.63和0.42升高至 8.53和1.01。复介电常数的变化取决于它们的介电 损耗机制不同。介电损耗主要分为电导损耗和极化 损耗,极化损耗又进一步可以分离为偶极取向极化 和界面极化^[28]。C/Al₂O₃基体内片状石墨之间及片状 石墨与基体间形成连续的导电网络,电子迁移会导 致强烈的电导损耗^[29]。另一方面,界面增加使自由 电荷在界面处大量聚集,在交变电场下形成的电子 弛豫极化和界面极化增强。对于Ni/C复合材料,还 原后的Ni和NiO均匀沉积在堆叠互锁的片状Al₂O₃ 上,片状结构增加了相互连接的可能性,促使更多导 电网络的形成,但部分片状石墨在还原过程中可能 被损耗,碳的导电网络和电子传输被削弱。复介电 常数虚部主要与电导率(σ)和极化弛豫损耗(ε^{''}_{relax}) 相关,根据德拜理论可知^[30]:

$$\varepsilon^{\prime\prime} = \varepsilon^{\prime\prime}_{\rm relax} + \frac{\sigma}{2\pi f\varepsilon_0} \tag{5}$$

随着还原温度的升高,Ni的晶型更为完整。因此, 在Ni/C500和Ni/C700内部产生了大量缺陷作为偶极子 中心,极化弛豫损耗会使介电常数虚部增加^[31-32]。

图6为不同温度还原后的Ni/C复合材料的复磁导 率的实部(μ')和虚部(μ'')。由图6(a)可知,Ni/C复合 材料的实部(μ')随频率的增加而下降。此外,在μ''曲 线上还存在共振峰,普遍认为磁损耗主要来源于自然 共振、交换共振、涡流损耗、磁滞损耗及畴壁位移^[33-34]。 由于外加磁场较弱,磁滞损耗可以被排除,而畴壁共振 通常发生在1~100 MHz内^[35],因此这主要是由还原形 成的Ni磁性颗粒的自然共振和交换共振引起的。

整体而言,Ni/C复合材料的低复磁导率可能与沉积量较少相关,特别是复合材料的孔隙率及孔径大小都会直接影响Ni颗粒的沉积。因此,本文中Ni/C双负载多孔C/Al₂O₃复合材料的微波吸收机制主要依赖于电导损耗,它们的复磁导率变化范围比较小。

2.3 微波吸收性能

根据线传输理论,通过计算反射损耗评估复合 材料在8.2~12.4 GHz频带内的微波吸收性能,如图 7(a)所示。当还原温度为700℃时,其吸波性能最 佳,在10.57 GHz频率处获得最小反射损耗-22.68 dB,有效吸收频带宽为1.68 GHz(9.94~11.62 GHz)。 Ni/C700 复合材料厚度变化的反射损耗如图7

(a) 在不同温度下还原(7mm)反射损耗

(b)所示,当样品厚度为6.5 mm时,Ni/C700复合材 料在11.77 GHz时具有最小的反射损耗-35.01 dB, 在8.2~12.4 GHz频率范围内的有效吸收频带宽为 1.75 GHz。明显地,随着样品厚度的增加,Ni/C700 的*RL*峰逐渐向低频移动。该现象可以用λ/4理论来 解释,它描述了匹配频率(*f*_m)和厚度(*d*_m)之间的关 系,可用以下公式表示^[36]:

$$f_{\rm m} = \frac{\rm c}{4d_{\rm m}} \times \frac{1}{\sqrt{\varepsilon'\mu'}} \left(1 + \frac{\rm tan^2 \delta_{\mu}}{8}\right)^{-1} \tag{6}$$

式中,c代表光速, δ_{μ} 代表磁损耗正切。由公式可知, 匹配频率(f_{m})和厚度(d_{m})及 $\sqrt{\epsilon'\mu'}$ 成反比。

图 7 C/Al₂O₃和复合材料的反射损耗 Fig. 7 C/Al₂O₃ and composite materials

3 结论

(1)在1350℃密封环境下可烧结出片状Al₂O₃晶 粒互锁且夹杂石墨片的多孔陶瓷,浸渍淀粉和硝酸 镍的溶液后可在700℃将Ni颗粒完全碳热还原,负 载于多孔网络中,该复合吸波材料密度为1.50 g/cm³,开气孔率达到58.38%。

(2)含有 Ni 颗粒和石墨片的双损耗多孔材料厚度 为 6.5 mm 时,其最小反射损耗为-35.01 dB,有效带宽 为 1.75 GHz,显示出较为良好的 X 波段微波吸收性能。

(3)Ni颗粒和锁定于片状Al₂O₃之间的石墨片形成 复合吸收剂,石墨片构筑的导电网络,镍颗粒与基体之 间的极化效应共同促进复合材料良好的微波吸收性能。

参考文献

— 54 —

[1] CHEN Z P, XU C, MA C Q, et al. Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding[J]. Advanced Materials, 2013, 25(9); 1296–1300.

[2] HUANG X G, ZHANG J, LAI M, et al. Preparation and microwave absorption mechanisms of the NiZn ferrite nanofibers[J]. Journal of Alloys and Compounds, 2015, 627: 367–373.

 $[\,3\,]$ LIU Y, SU X L, LUO F, et al. Enhanced electromagnetic and microwave absorption properties of carbonyl iron/Ti_3 SiC_2/epoxy

resin coating [J]. Journal of Materials Science Materials in Electronics, 2017, 29(3):2500-2508.

[4] FENG Y B, QIU T, SHEN C Y, et al. Electromagnetic and absorption properties of carbonyl iron/ rubber radar absorbing materials [J]. IEEE Transactions on Magnetics, 2006, 42 (3) : 363-368.

 $\label{eq:states} \begin{array}{l} [5] LI \mbox{ G } M, WANG \mbox{ L } C, LI \mbox{ W } X, et al. \mbox{ NiFe}_2O_4, Fe}_3O_4 \mbox{-} FexNiy or FexNiy loaded porous activated carbon balls as lightweight microwave absorbent} [J]. Rsc. Advances, 2014, 5(11):8248 \mbox{-} 8248 \mbox{-} 8257. \end{array}$

[6] CUI J, ZHOU Z H, JIA M Y, et al. Solid polymer electrolytes with flexible framework of SiO₂ nanofibers for highly safe solid lithium batteries[J]. Polymers, 2020, 12(6):1324–1335.

[7] KUMAR A, AGARWALA V, SINGH D, et al. Effect of milling on dielectric and microwave absorption properties of SiC based composites[J]. Ceramics International, 2014, 40(1):1797–1806.

[8] LIU Y, LI Y Y, LUO F, et al. Mechanical, dielectric and microwave absorption properties of TiC/cordierite composite ceramics [J]. Journal of Materials Science Materials in Electronics, 2017, 28 (16):12115–12121.

[9] WEN F S, ZHANG F, LIU Z Y, et al. Investigation on microwave absorption properties for multiwalled carbon nanotubes/ Fe/Co/Ni nanopowders as lightweight absorbers[J]. The Journal of Physical Chemistry C, 2011, 115(29):14025-14030.

宇航材料工艺 http://www.yhclgy.com 2023年 第5期

[10] KONG L, YIN X W, HAN M K, et al. Carbon nanotubes modified with ZnO nanoparticles: High-efficiency electromagnetic wave absorption at high-temperatures [J]. Ceramics International, 2015, 41(3):4906-4915.

[11] MEI H, ZHAO X, GUI X C, et al. SiC encapsulated Fe@CNT ultra-high absorptive shielding material for high temperature resistant EMI shielding[J]. Ceramics International, 2019,45(14):17144-17151.

[12] LIU P, GAO S, WANG Y, et al. Metal-organic polymer coordination materials derived Co/N-doped porous carbon composites for frequency-selective microwave absorption [J]. Composites Part B Engineering, 2020, 202(1):108406.

[13] ZHAO H, SEOW J, CHENG Y, et al. Green synthesis of hierarchically porous carbons with tunable dielectric response for microwave absorption [J]. Ceramics International, 2020, 46 (10):15447-15455.

[14] ZHOU X F, JIA Z R, ZHANG X X, et al. Controllable synthesis of Ni/NiO@ carbon hybrid composites towards remarkable electromagnetic wave absorption and wide absorption bandwidth[J]. Journal of Materials Science & Technology, 2021, 87:120–132.

[15] SUN C, GUO Y, XU X, et al. In situ preparation of carbon/Fe₃C composite nanofibers with excellent electromagnetic wave absorption properties [J]. Composites Part A: Applied Science and Manufacturing, 2017, 92:33–41.

[16] DONG Y, FAN X, WEI H, et al. A lightweight CNWs-SiO₂/3Al₂O₃•2SiO₂ porous ceramic with excellent microwave absorption and thermal insulation properties [J]. Ceramics International, 2020, 46(12): 20395–20403.

[17] HONDA S, HASHIMOTO S, ITO Y, et al. Improvement on characteristics of porous alumina from platelets using a TEOS treatment[J]. Ceramics International, 2013, 39(2):1265–1270.

[18] FAN Y, YANG H, LI M, et al. Evaluation of the microwave absorption property of flake graphite [J]. Materials Chemistry & Physics, 2009, 115(2/3): 696-698.

[19] GAO Z, XU B, MA M, et al. Electrostatic selfassembly synthesis of $ZnFe_2O_4$ quantum dots ($ZnFe_2O_4@C$) and electromagnetic microwave absorption [J]. Composites, 2019, 179(15):107417. 1–107417. 11.

[20] WANG J H, TAN J, OR S W. Enhanced microwave electromagnetic properties of core/shell/shell-structured Ni/SiO₂/ polyaniline hexagonal nanoflake composites with preferred magnetization and polarization orientations [J]. Materials & Design, 2018, 153(5): 190–202.

[21] YUVARAJ S, FAN-YUAN L, TSONG-HUEI C, et al. Thermal decomposition of metal nitrates in air and hydrogen environments [J]. Journal of Physical Chemistry B, 2003, 107 (4):1044-1047.

[22] JAGTAP S B, KALE B, GOKARN A N. Carbothermic reduction of nickel oxide: Effect of catalysis on kinetics [J]. Metallurgical Transactions B, 1992, 23(1):93-96.

[23] WEI H, YIN X, HOU Z, et al. A Novel SiC-based microwave absorption ceramic with $Sc_2Si_2O_7$ as transparent matrix

[J]. Journal of the European Ceramic Society, 2018, 38(12):4189–4197.

[24] PAN H, YIN X, XUE J, et al. The microstructures, growth mechanisms and properties of carbon nanowires and nanotubes fabricated at different CVD temperatures [J]. Diamond & Related Materials, 2017, 72:77–86.

[25] LIU X F,ZHANG L T,YIN X W, et al. The microstructure of SiCN ceramics and their excellent electromagnetic wave absorbing properties[J]. Ceramics International, 2015, 41(9): 11372–11378.

[26] DENG Z, LI Y, ZHANG H B, et al. Lightweight Fe@C hollow microspheres with tunable cavity for broadband microwave absorption[J]. Composites, 2019, 177(15): 107346. 1–107346. 8.

[27] GOLCHINVAFA S, MASOUDPANAH S M, JAZIREHPOUR M, et al. Magnetic and microwave absorption properties of FeCo/CoFe₂O₄ composite powders-science direct[J]. Journal of Alloys and Compounds , 2019, 809(15):151746-151746.

[28] REN F, YU H, WANG L, et al. Current progress on the modification of carbon nanotubes and their application in electromagnetic wave absorption[J]. RSC Advances, 2014, 4(28): 14419.

[29] YANG Q, SHI Y, FANG Y, et al. Construction of polyaniline aligned on magnetic functionalized biomass carbon giving excellent microwave absorption properties [J]. Composites Science and Technology, 2019, 174(12):176-183.

[30] QING Y, XUAN W, ZHOU Y, et al. Enhanced microwave absorption of multi-walled carbon nanotubes/epoxy composites incorporated with ceramic particles [J]. Composites Science and Technology, 2014, 102(4):161–168.

[31] WANG F Y, SUN Y Q, LI D R, et al. Microwave absorption properties of 3D cross-linked Fe/C porous nanofibers prepared by electrospinning[J]. Carbon, 2018, 134(20):264-273.

[32] LI D R, GUO K, WANG F Y, et al. Enhanced microwave absorption properties in C band of Ni/C porous nanofibers prepared by electrospinning[J]. Journal of Alloys and Compounds, 2019, 800: 294–304.

[33] ZHANG K, GAO X, ZHANG Q, et al. Preparation and microwave absorption properties of asphalt carbon coated reduced graphene oxide/magnetic $CoFe_2O_4$ hollow particles modified multi-wall carbon nanotube composites [J]. Journal of Alloys and Compounds, 2017, 723:912–921.

[34] XIE Z G, GENG D Y, LIU X G, et al. Magnetic and microwave-absorption properties of graphite-coated (Fe, Ni) nanocapsules [J]. Journal of Materials Science & Technology, 2011,7(27):607-614.

[35] LI G, WANG L, LI W, et al. Fe⁻, Co⁻, and Ni⁻ loaded porous activated carbon balls as lightweight microwave absorbents [J]. Chemphyschem A European Journal of Chemical Physics & Physical Chemistry, 2016, 6(16): 3458–3467.

[36] SUN J, XU H L, SHEN Y, et al. Enhanced microwave absorption properties of the milled flake-shaped FeSiAl/graphite composite[J]. Journal of Alloys & Compounds, 2013, 548(8): 18-22.