自动铺丝末端缺陷角度对层合板拉伸性能的影响

丰亮宽^{1,2} 杨 涛^{1,2} 杜 宇² 李韦清² 原文慧² (1 天津市现代机电装备技术重点实验室,天津 300387)

(2 天津工业大学机械工程学院,天津 300387)

文 摘 自动纤维铺放(AFP)工艺能够有效制造大型复合材料构件,但在铺放过程中因为丝束末端等断面而出现不同角度内嵌缺陷。为解决相关问题,按照[(90°/0°)₅/90°]和[(0°/90°)₅/0°]的铺层顺序,在0°和90° 铺层内分别设置不同丝束末端角度的孔隙缺陷或重叠缺陷。结果表明:不同角度纤维铺层内嵌不同角度缺陷 时,导致复合材料构件差异明显。在90°纤维铺层方向上,内嵌90°孔隙缺陷和90°重叠缺陷时,试件拉伸强度 最高,拉伸强度比分别为90.89%和90.11%。在0°纤维铺层方向上,内嵌±30°孔隙缺陷和30°重叠缺陷时,试 件拉伸强度最高,拉伸强度比分别为28.48%和50.71%。

关键词 复合材料,自动铺放技术,缺陷,力学性能 中图分类号:V258 DOI:10.12044/j.issn.1007-2330.2020.03.011

Influence of Defect Angle at the End of Tows on the Tensile Properties of Laminates by Automated Placement

FENG Liangkuan^{1,2} YANG Tao^{1,2} DU Yu² LI Weiqing² YUAN Wenhui²

(1 Advanced Mechatronics Equipment Technology Tianjin Area Major Laboratory, Tianjin 300387)

(2 School of Mechanical Engineering, Tianjin Polytechnic University, Tianjin 300387)

Abstract Automatic fiber placement (AFP) technology could manufacture large composite components effectively, but there are different angle embedded defects due to the same cross-section at the end of the tow in the process of placement. In order to solve the related problems, according to the laying sequence of $[(90^{\circ}/0^{\circ})_{s}/90^{\circ}]$ and $[(0^{\circ}/90^{\circ})_{s}/0^{\circ}]$, the gap defects or overlapping defects with different end angles of the tow were set in the 0° and 90° laying sequence respectively. The experimental results show that the difference of the composite components is obvious when the defects are embedded in different angles. In the direction of 90° fiber layer, when 90° void defect and 90° overlapping defect are embedded, the tensile strength of the specimen is the highest, and the tensile strength ratio is 90. 89% and 90. 11%, respectively. In the direction of 0° fiber layer, the tensile strength of the specimen is the highest when embedded with \pm 30° gap defect and 30° overlapping defect, and the tensile strength ratio is 28. 48% and 50. 71% respectively.

Key words Composites, Automated fiber placement, Defects, Mechanical property

0 引言

近年来复合材料在航空、航天等领域使用量逐渐增多,应用范围也逐年增大^[1-6]。传统的手工铺放成型效率低、产品质量一致性难以保证,而且结构尺寸也受到手工操作工作范围的限制。自动纤维铺放(AFP)技术能够提高复合材料产率和稳定结构件尺寸^[7],具备制造大型部件的能力。但是AFP工艺在使

用过程中仍有许多局限性,如铺设过程中出现各种 伴生缺陷。当纤维丝束铺放在具有复杂形状的表面 上时,由于高度自动化,伴生缺陷种类可能高度重 复,或者伴生缺陷分布随意。而造成丝束中断使缺 陷生成的频率取决于零件的复杂程度和加工参数, 例如丝束宽度、铺放速度以及牵引转向^[8]。

SAWICKI等^[9]学者通过实验研究了孔隙缺陷和

收稿日期:2019-06-05 基金项目:天津市应用基础与前沿技术研究计划重点项目(11JCZDJC23000) 第一作者简介:丰亮宽,1993年出生,硕士,研究方向为复合材料成型技术与装备。E-mail:fenglk0317@163.com 通信作者:杨涛,1970年出生,教授。E-mail:yangtao@tjpu.edu.cn

重叠缺陷对复合材料压缩强度的影响,在厚度最大 值为5mm的试样中设置不同宽度的缺陷,得出结论 为当存在较小的孔隙缺陷或重叠缺陷时,试件强度 急剧下降。LAN等学者通过实验研究不同参数的孔 隙缺陷和重叠缺陷对拉伸强度^[10]、面内剪切性能和 压缩特性^[11]的影响。克罗夫特等学者^[12]通过实验研 究,在拉伸、压缩和剪切实验研究中,对复合材料层 合板的主要缺陷(孔隙缺陷、重叠缺陷、半孔隙缺陷、 半重叠缺陷和扭曲缺陷)产生的影响进行量化。 FAYAZBAKHSH等^[13]学者通过开发MATLAB子程 序,用于预测AFP产品成品中缺陷的分布情况,在后 期的伴生缺陷研究中,引入缺陷层来量化常见缺陷 对可变刚度层合板的弹性性能的影响。

本文研究铺丝末端造成的内嵌孔隙/重叠缺陷, 对含不同角度缺陷的试件进行拉伸测试,分析和比 较其拉伸强度和失效行为。探索复合材料试件纤维 丝束断裂处与受力方向的不同角度,即丝束末端不 同角度的内嵌缺陷对试件力学性能的影响,对照单 向内嵌缺陷,引入交叉内嵌缺陷,分析不同丝束末端 缺陷配置对层合板的影响。

1 内嵌缺陷试件的拉伸实验

1.1 内嵌缺陷类型设置

缺陷设置位置均在试件中间,如图1所示。图1 (a)所示内嵌缺陷角度为±30°、±45°、±60°并且交叉分 布。图1(b)所示内嵌缺陷角度为30°、45°、60°。完 好试件层合板示意图如图1(c)所示。

0°纤维方向内嵌孔隙缺陷或重叠缺陷试件按照 [(90°/0°)₅/90°]的顺序进行铺放,缺陷均位于0°纤维

宇航材料工艺 http://www.yhclgy.com 2020年 第3期

层内。90°纤维方向内嵌孔隙缺陷或重叠缺陷试件 按照[(0°/90°)₅/0°]的顺序进行铺放,缺陷均位于90° 铺层内。

图2为内嵌交叉缺陷试件纤维层分布图,当内嵌 缺陷角度为±30°、±45°、±60°时,内嵌孔隙/重叠缺陷 在试件纤维层分布如图2所示,内嵌孔隙/重叠缺陷 的试件在含孔隙/重叠缺陷纤维层的缺陷角度分 别为:

+30°,-30°,+30°,-30°,+30°,

 $+45^{\circ},-45^{\circ},+45^{\circ},-45^{\circ},+45^{\circ},$

+60°,-60°,+60°,-60°,+60° $_{\circ}$

当内嵌缺陷角度为30°、45°、60°时,内嵌孔隙/ 重叠缺陷在试件纤维层分布如图3所示。

图2 内嵌交叉缺陷纤维层分布图

Fig. 3 Fiber layer distribution diagram of embedded defects specimens

— 63 —

表1为内嵌缺陷规格,常见铺放丝束宽度为 6.35 mm,所以本次实验将缺陷宽度设为3.18 mm, 即0.5倍丝束宽度。

表1 缺陷规格				
	Tab. 1	Specification	of defects	
缺陷铺层纤维 角度/(°)	缺陷 类型	缺陷宽度 d/mm	缺陷角度 <i>θ</i> /(°)	试件 编号
0 90	孔隙(G) 重叠(0)	3.18	± 30 ± 45 ± 60 30 45	1 2 3 4 5
			60 90	6 7

1.2 层合板制备

根据表1规格,通过人工铺放来制备实验所用试件, 保证缺陷在试件中的位置及形态,以模拟自动纤维铺 放工艺中的实际缺陷^[14]。试件通过热压罐固化成型。

1.3 实验条件

通过拉伸实验研究人工设置内嵌孔隙缺陷和重叠 缺陷对试件的影响,所有实验在室温条件下,通过使用 岛津AGS-X电子实验机完成,实验机以2mm/min的位 移控制速率施加,同时采集载荷、时间以及位移等实验 数据。完好试件及具有内嵌缺陷试件尺寸为250mm× 25mm×1.4mm。为避免试件在实验过程中夹头夹持 处应力集中,同时采用Araldite 2015 黏合剂,将尺寸为 50mm×25mm×2mm的铝片粘贴到试件两端。

2 结果分析

2.1 0°纤维铺层内嵌缺陷试件性能分析

在0°纤维铺层设计内嵌缺陷时,试件铺层顺序

按照[(90°/0°)₅/90°]的铺层顺序进行铺放。图4为用 莱卡显微镜分别拍摄的0°铺层内嵌缺陷成型试件侧 面微观图及相对应的完好试件侧面微观图。

当内嵌孔隙缺陷时,由于丝束的断裂,使试件缺 陷处的纤维层缺失,试件产生内凹,从而导致缺陷处 的厚度减小。当内嵌重叠缺陷时,与内嵌孔隙缺陷 相反,虽然丝束断裂,但纤维层重叠使得缺陷处纤维 堆积,试件产生外凸,导致缺陷处的厚度增大。

2.1.1 内嵌孔隙缺陷试件性能分析

图 5 为 0° 纤维铺层内嵌孔隙缺陷试件拉伸载荷-位移曲线。

图5 0°铺层内嵌孔隙缺陷典型试件拉伸载荷-位移曲线

Fig. 5 Tensile load–displacement curves of typical specimens with gap defects embedded in 0° layers

图 6 及表 2 为 0°纤维铺层内嵌孔隙缺陷试件的 拉伸强度。通过拉伸强度比(相同规格内嵌缺陷试 件的拉伸强度平均值与完好试件拉伸强度平均值的 比值)来对比不同规格内嵌缺陷试件的拉伸性能。 本组所有内嵌缺陷试件中,当内嵌缺陷角度θ为±30° 时,与完好试件拉伸强度比达到 28.48%,其他规格 试件与完好试件拉伸强度比均在 20% 以下。主要原 因是 0°纤维铺层是试件的主要承载层,而孔隙缺陷 导致纤维层中丝束中断,从而对试件的强度和应力

宇航材料工艺 http://www.yhclgy.com 2020年 第3期

分布产生了显著的影响。受到拉伸载荷时缺陷处极 易产生裂纹,然后跨层蔓延,最后导致构件失效。

			•	
缺陷铺层纤 维角度/(°)	缺陷 类型	缺陷角度 θ/(°)	拉伸强度 /MPa	拉伸强度比 /%
		±30	329.45	28.48
		±45	230.34	19.91
		±60	146.71	12.68
0	孔隙(G)	30	64.71	5.60
		45	40.63	3.51
		60	31.78	2.75
		90	22.17	1.91

内嵌交叉缺陷时,试件的拉伸强度逐渐减小,主 要原因是随着内嵌缺陷角度的增大,不同纤维铺层 的缺陷夹角减小,使得各处缺陷更接近形成完整断 裂面。内嵌对准缺陷时,随着内嵌缺陷角度的增大, 试件的拉伸强度逐渐减小,主要原因是随着内嵌缺 陷角度的增大,缺陷处断面与相邻90°完好纤维铺层 的纤维丝束夹角减小,由于0°纤维铺层是试件的主 要承载层,所以试件拉伸强度逐渐减小。内嵌交叉 缺陷试件的拉伸性能明显高于内嵌对准缺陷试件, 主要原因是试件内嵌交叉缺陷时,90°完好纤维铺层 相邻内嵌缺陷角度不同的纤维层,内嵌交叉缺陷不 易形成相同角度的断面,所以内嵌交叉缺陷试件拉 伸性能优于内嵌对准缺陷试件。

2.1.2 内嵌重叠缺陷试件性能分析

图7为0°纤维铺层内嵌重叠缺陷试件的载荷-位 移曲线,图8及表3为0°铺层内嵌重叠缺陷试件的拉 伸强度。完好试件的拉伸强度为1156.85 MPa,本 组所有内嵌缺陷试件中,当内嵌缺陷角度θ为30°时, 与完好试件拉伸强度比达到50.71%,其他规格试件 与完好试件拉伸强度比均在50%以下。

图7 0°铺层内嵌重叠缺陷典型试件拉伸载荷-位移曲线

Fig. 7 Tensile load-displacement curves of typical specimens with overlap defects embedded in 0° layers

Fig. 8 Tensile strength of specimens with overlap defects embedded in 0° layers

	表3	0°纤维铺层内嵌重叠缺陷试件拉伸强度
Tab. 3	B Ter	sile strength of specimens with overlap defects
		embedded in 0° levers

	CIII	bedded in 0	luyers		
缺陷铺层纤 维角度/(°)	缺陷 类型	缺陷角度 θ/(°)	拉伸强度 /MPa	拉伸强度比 /%	
		±30	383.97	33.19	
		±45	504.34	43.59	
		±60	443.36	38.32	
0	重叠(0)	30	586.67	50.71	
		45	499.32	43.16	
		60	387.62	33.50	
		90	305.98	26.45	

当内嵌交叉缺陷时,随着内嵌缺陷角度的增大, 试件拉伸强度呈现先增后减的趋势,主要原因是,内 嵌缺陷角度θ是±30°或±60°时,与断面夹角更小,所 以导致拉伸强度有所下降。内嵌对准缺陷时,随着 内嵌缺陷角度的增大,试件的拉伸强度逐渐减小,主 要原因是随着内嵌缺陷角度的增大,缺陷处断面与 相邻90°完好纤维铺层的纤维丝束夹角减小,由于0° 纤维铺层是试件的主要承载层,所以试件拉伸强度 逐渐减小。重叠缺陷能够对中断的丝束起到很好的 连接作用,便于载荷传递,所以试件内嵌交叉缺陷和

— 65 —

内嵌对准缺陷时,试件的拉伸强度差异并不明显。

内嵌重叠缺陷试件拉伸强度比明显高于内嵌孔 隙缺陷试件,主要原因是相对于孔隙缺陷,重叠缺陷 能够对中断的丝束起到很好的连接作用,便于载荷 传递。当试件内嵌重叠缺陷时,含缺陷区域单位面 积内纤维体积分数增加,弱化了应力集中。

2.2 90°纤维铺层内嵌缺陷试件性能分析

在90°纤维铺层设计内嵌缺陷时,试件铺层顺序 按照[(0°/90°),/0°]的设计方式进行铺放。图9为用 莱卡显微镜分别拍摄的90°纤维铺层内嵌缺陷成型 试件侧面微观图及相对应的完好试件侧面微观图。

(a) 内嵌孔隙缺陷

(b) 内嵌重叠缺陷

(c) 完好试件

图9 90°铺层内嵌缺陷试件及完好试件

Fig. 9 $\,$ Embedded defects in 90° layers and intact specimens

2.2.1 内嵌孔隙缺陷试件性能分析

图 10为90°纤维铺层内嵌孔隙缺陷试件拉伸载 荷-位移曲线,图 11及表4为90°纤维铺层内嵌孔隙

拉伸载荷-位移曲线

缺陷试件的拉伸强度。

defects embedded in 90° layers

表 4 90°纤维铺层内嵌孔隙缺陷试件拉伸强度 Tab. 4 Tensile strength of specimens with gap defects

embedded in 90° layers

缺陷铺层纤维 角度/(°)	缺陷 类型	缺陷角度 <i>θ</i> /(°)	拉伸强度 /MPa	拉伸强度 比/%
		±30	1030.6	83.25
		±45	1055.97	85.29
		±60	1066.89	86.18
90	孔隙(G)	30	913.41	73.78
		45	1027.92	83.03
		60	1089.85	88.03
		90	1125.3	90.89

完好试件的拉伸强度为1238.03 MPa,本组所 有内嵌缺陷试件中,当内嵌缺陷角度θ为90°时,与完 好试件拉伸强度比达到90.89%,其他规格试件与完 好试件拉伸强度比均在70%~90%。

当试件内嵌交叉缺陷或内嵌对准缺陷时,随着 内嵌缺陷角度的增大,试件的拉伸强度呈现出增大 的趋势,主要原因是内嵌缺陷角度的增大,与内嵌缺 陷纤维层纤维丝束的夹角变小,纤维丝束的分布更 接近完好铺层纤维丝束,对内嵌缺陷纤维层的损伤 面积减小。由于0°纤维铺层是试件的主要承载层, 所以试件内嵌交叉缺陷和内嵌对准缺陷时,试件的 拉伸强度差异并不明显。

2.2.2 内嵌重叠缺陷试件性能分析

图 12 为 90°纤维铺层内嵌重叠缺陷试件拉伸载 荷-位移曲线,图 13 及表 5 为 90°纤维铺层内嵌重叠 缺陷试件的拉伸强度。完好试件的拉伸强度为 1 238.03 MPa,本组所有内嵌缺陷试件中,当内嵌缺 陷角度 θ 为 90°时,与完好试件拉伸强度比达到 90.11%,其他规格试件与完好试件拉伸强度比均在 70%~90%。

当内嵌交叉缺陷时,随着内嵌缺陷角度的增大, 试件拉伸强度呈现先增后减的趋势,主要原因是内

宇航材料工艺 http://www.yhclgy.com 2020年 第3期

— 66 —

Fig. 12 Tensile load-displacement curves of typical specimens with overlap defects embedded in 90° layers

图 13 90°纤维铺层内嵌重叠缺陷试件拉伸强度 Fig. 13 Tensile strength of specimens with overlap defects

embedded in 90° layers

表 5 90°纤维铺层内嵌重叠缺陷试件拉伸强度 Tab. 5 Tensile strength of specimens with overlap defects embedded in 90° layers

缺陷铺层纤维 角度/(°)	缺陷 类型	缺陷角度 <i>θ</i> /(°)	拉伸强度 /MPa	拉伸强度 比/%
		±30	990.44	80.00
		±45	1039.73	83.98
		±60	934.38	75.47
90	重叠(0)	30	1018.15	82.24
		45	1014.25	81.93
		60	1075.32	86.86
		90	1115.59	90.11

嵌缺陷角度θ是±30°或±60°时,与断面夹角更小,导 致拉伸强度较θ为±45°时有所下降。当试件内嵌对 准缺陷时,随着内嵌缺陷角度的增大,试件的拉伸强 度呈现出增大的趋势,主要原因是内嵌缺陷角度的 增大,与内嵌缺陷纤维层纤维丝束的夹角变小,纤维 丝束的分布更接近完好铺层纤维丝束,内嵌缺陷纤 维层的损伤面积减小。

由于0°纤维铺层是拉伸实验中试件的主要承载 层,因此在90°纤维铺层内嵌缺陷时对试件拉伸性能 的影响并不显著。与0°纤维铺层内嵌缺陷的情况相 宇航材料工艺 http://www.yhclgy.com 2020年 第3期 反,在90°纤维铺层内嵌缺陷时,内嵌孔隙缺陷试件 的拉伸强度普遍高于内嵌重叠缺陷试件。主要原因 是:纤维丝束的叠加使重叠缺陷区域厚度发生变化, 相邻的0°纤维铺层产生面外褶皱,导致内嵌缺陷区 域产生应力集中,从而导致试件拉伸强度有所下降。

3 结论

(1)内嵌缺陷设置在0°方向铺层内时,试件拉伸 性能下降明显。内嵌±30°孔隙缺陷和30°重叠缺陷 时,试件拉伸强度比分别为28.48%和50.71%。由 于0°纤维铺层是拉伸实验中试件的主要承载层,因 此在0°纤维铺层内嵌缺陷时对试件拉伸性能的影响 十分显著。

(2)内嵌缺陷设置在90°方向铺层内时,试件拉伸性能下降不明显。内嵌90°孔隙缺陷和90°重叠缺陷时,试件拉伸强度比分别为90.89%和90.11%。

(3)内嵌缺陷设置在0°纤维方向铺层内时,由于 0°方向铺层是整个试件的主要承载层,纤维方向平 行于实验机拉力方向,导致试件断裂点发生在内嵌 缺陷附近。除断裂点以外,还发现试件的纤维断裂 以及分层损伤。拉伸时,首先在缺陷处产生裂纹,随 着载荷增大,裂纹在层内扩展,造成分层损伤,然后 在内嵌缺陷附近产生明显的纤维断裂,试件失效。

(4)内嵌缺陷设置在90°纤维方向铺层内时,由 于0°方向纤维铺层才是主要的承载层,90°方向铺层 纤维垂直于外加载荷方向,因此,缺陷试件的断裂并 未完全发生在内嵌缺陷附近。随着载荷的增加,仍 然是内嵌缺陷处首先发生断裂,随着载荷越来越大, 裂纹逐渐扩展,然后发生层间损伤,直至纤维断裂, 试件失效。

参考文献

[1] 赵聪,陆楠楠,闫西涛,等.自动铺丝用预浸丝制备工 艺研究[J]. 固体火箭技术,2014,37(5):718-723.

ZHAO Cong, LU Nannan, YAN Xitao, et al. Research on the process of preparation of prepreg tow applied in automatic fiber placement[J]. Journal of Solid Rocket Technology, 2014, 37(5): 718–723.

[2] 杜宇,杨涛,戴维蓉,等. 纤维曲线铺放的变刚度复合 材料损伤失效实验研究[J]. 固体火箭技术,2013,36(6): 826-830.

DU Yu, YAGN Tao, DAI Weirong, et al. Experimental research of damaging failure of variable-stiffness composite [J]. Journal of Solid Rocket Technology, 2013, 36(6): 826-830.

[3] 杜善义,关志东. 我国大型客机先进复合材料技术应 对策略思考[J]. 复合材料学报,2008,25(1):1-10.

DU Shanyi, GUAN Zhidong. Strategic considerations for development of advanced composite technology for large commercial aircraft in China [J]. Acta Materiae Compositae Sinica, 2008, 25(1):1-10.

[4] 文立伟,肖军,王显峰,等.中国复合材料自动铺放技术研究进展[J].南京航空航天大学学报,2015,47(5):637-649.

WEN Liwei, XIAO Jun, WANG Xianfeng, et al. Progress of automated placement technology for composites in China [J]. Journal of Nanjing University of Aeronautics & Astronautics, 2015,47(5):637-649.

[5] 赵云峰,孙宏杰,李仲平. 航天先进树脂基复合材料制造技术及其应用[J]. 宇航材料工艺,2016,46(4):1-7.

ZHAO Yunfeng, SUN Hongjie, LI Zhongping. Manufacturing technology and its application of aerospace advanced polymer matrix composites [J]. Aerospace Materials & Technology, 2016, 46(4):1–7.

[6] 张振甫,肖军,吴海桥,等.复合材料锥壳0°铺层的自动铺放成型方法研究[J]. 宇航材料工艺,2007,37(2):55-57.

ZHANG Zhenfu, XIAO Jun, WU Haiqiao, et al. Study on laminating method for 0° plies in composite conical shell manufactured by automated tape laying [J]. Aerospace Materials & Technology, 2007, 37(2):55-57.

[7] WISNOM M R. The role of delamination in failure of fibre-reinforced composites [J]. Philos. Tran. R. Soc. A; Math. Phys. Eng. Sci. , 1965, 2012(370):1850-1870.

[8] LUKASZEWICZ D H J, WARD C, POTTER K D. The engineering aspects of automated prepreglayup: History, present and future[J]. Compos. Part B: Eng. ,2012,43(3):997–1009.

[9] Sawicki A J, Minguet P J. The effect of intraply overlaps and gaps upon the compression strength of composite laminates [R]//AIAA/ASME/ASCE/SHS/ASC Structures, Structural Dynamics & Materials Conference, 1998, 36:744-754.

[10] LAN M, CARTIE D, DAVIES P, et al. Microstructure and tensile properties of carbonepoxy laminates produced by automated fibre placement: influence of a caul plate on the effects of gap and overlap embedded defects[J]. Compos. Part A: Appl. Sci. Manuf. ,2015,78:124–134.

[11] LAN M, CARTIÉ D, DAVIES P, et al. Influence of embedded gap and overlap fiber placement defects on the microstructure and shear and compression properties of carbon– epoxy laminates [J]. Compos Part A: Appl. Sci. Manuf. , 2016, 82:198–207.

[12] CROFT K, LESSARD L, PASINI D, et al. Experimental study of the effect of automated fiber placement induced defects on performance of composite laminates [J]. Compos. Part A: Appl. Sci. Manuf. ,2011,42(5):484-491.

[13] FAYAZBAKHSH K, NIK M A, PASINI D, et al. Defect layer method to capture effect of gaps and overlaps in variable stiffness laminates made by automated fiber placement [J]. Compos. Struct. ,2013,97:245-251.

[14] MORITZ K, MIKE I J, WILHELM W, et al. Experimental investigation of the effect of defects in automated fibre placement produced composite laminates [J]. Compos. Struct. ,2018,201:1004-1017.