纳米 TiO₂/ Fe₂O₃ 复合材料的制备及 其红外吸收性能研究^{*}

胡永茂¹ 项金钟¹ 李茂琼² 张学清² 吴兴惠

(1 云南大学化学与材料工程学院,昆明 650091)
(2 大理学院物理系,大理 671000)

文 摘 用溶胶 —凝胶法制备了纳米 TiO₂/ Fe₂O₃ 复合材料,并用 XRD、TEM 等方法对其进行了表征,给出了相关的工艺参数。研究了不同组分的纳米 TiO₂/ Fe₂O₃ 的红外吸收特性。结果表明,纳米 TiO₂/ Fe₂O₃ 复合材料在 400 cm⁻¹~1 000 cm⁻¹内随 Fe₂O₃ 含量的增加,吸收峰明显宽化。

关键词 溶胶 一凝胶法,TiO₂/Fe₂O₃,纳米复合材料,红外吸收

A Study of Synthesis and Infrared Absorbency of TiO₂/ Fe₂O₃ Nanocomposite

Hu Yongmao¹ Xiang Jinzhong¹ Li Maoqiong² Zhang Xueqing² Wu Xinghui¹ (1 College of Chemistry and Material Engineering , Yunnan University , Kunming 650091) (2 Department of Physics , Dali College , Dali 671000)

Abstract Nanoscale composites of TiO_2 / Fe₂O₃ are synthesized under different processing parameters by using Solgel method. The structure and infrared absorbency of TiO_2 / Fe₂O₃ composite with different compositions are studied with XRD, TEM and infrared spectra. Experimental results show that absorption peaks of the TiO_2 / Fe₂O₃ extend from wavenumber of 400 cm⁻¹ to 1 000 cm⁻¹ with increase of Fe₂O₃ content.

Key words Sol-gel method ,TiO2/ Fe2O3 ,Nanocomposite ,Infrared absorbency

溶胶 —凝胶法属于湿化学方法(亦即液相法)的 一种,其基本原理是以液体或固体化学试剂配制成 金属无机盐或金属醇盐前驱体,将前驱体溶于溶剂 中形成均匀溶液,溶质与溶剂通过水解或醇解反应, 进而生成物经聚集形成稳定的溶胶体系;溶胶经陈 化干燥后,在低于传统烧成温度下烧结制得样品。 与其它方法相比,溶胶 —凝胶法具有反应温度低、化 学均匀性好、纯度高等特点。溶胶向凝胶转变过程 中形成的大量孔隙,适宜于掺杂组分和掺杂工艺的 设计,为制备纳米复合材料提供了一种简便有效的 途径^[1~5]。

纳米 TiO₂ 是一种新型功能材料,在光催化、紫 外可见光吸收以及微波和红外波段的吸收、功能陶 瓷等方面具有广阔的开发和应用前景。纳米 TiO₂

宇航材料工艺 2003 年 第4 期

收稿日期:2002-06-10;修回日期:2003-05-13

^{*}云南省自然科学基金重点项目:2001 E0003Z

胡永茂,1974年出生,硕士,主要从事功能材料的研究工作

与其它材料复合,能实现功能互补,拓宽使用范围, 特别是纳米尺寸上的复合,可望得到性能优异的新 型功能材料。分析表明^[6],TiO₂、Fe₂O₃的红外吸收 强峰出现在相近频率范围内,两者复合可以扩宽吸 收频段,为多功能、宽频带红外吸收材料的研制提供 了一条新的思路。本文采用溶胶 —凝胶法制备了不 同组分的纳米 TiO₂/Fe₂O₃ 复合材料,给出了相关的 工艺参数,对样品的红外吸收性能进行了研究。 1.1 试剂

钛酸四丁脂[Ti(OC₄H₀)₄](化学纯);硝酸铁[Fe (NO₃)₃ ·9H₂O](分析纯);乙醇(CH₃CH₂OH)(分析 纯);盐酸(HCl)(分析纯)。

1.2 样品制备

按图 1 所示工艺过程制备纳米 TiO₂/ Fe₂O₃ 复合 材料[Ti (OC₄H₉)₄ CH₃CH₂OH H₂O = 1 20 4 (摩尔 比)],其中的 HCI 起反应催化作用,其它制备条件见 表 1。

1 实验

图 1 工艺过程示意图

Fig. 1 Schematic procedure of preparing samples

	V PAG				
Tab. 1	Preparatio	n conditions	of	the	samples

样品的制备条件

样品		用量	lα		凝胶时间				
	$\mathrm{Ti}\left(\mathrm{OC}_{4}\mathrm{H}_{9}\right)_{4}$	CH ₃ CH ₂ OH	$Fe(NO_3)_3 9H_2O$	H ₂ O	/ h 条件				
1 #	0.1	2	0	0.4	3.5	5	/ min ;450	x 2 h	
2 #	0.1	2	0.005	0.355	9	5	/ min ;450	x 2 h	
3 #	0.1	2	0.01	0.31	74.5	5	/ min ;450	x 2 h	
4 #	0.1	2	0.02	0.22	181	5	/ min ;450	x 2 h	
5 #	0.1	2	0.04	0.04	600	5	/ min ;450	x 2 h	

样品凝胶时间以反应完成到溶胶容器倾斜 45° 不流动为准;原材料的反应以及溶胶—凝胶转变均 在(22 ±1) 、相对湿度(42 ±2)%条件下进行;实际 参与反应的水量是表中所列水量加上引入的硝酸铁 中结晶水量;在调节 pH 值过程中使用浓盐酸,引入 的水量忽略不计。

1.3 样品的表征

用日本理学公司 D/ MAX —3B 型 X 射线衍射仪 对样品进行物相分析和纳米晶粒度计算;用日本日 立公司 H—800 型透射电子显微镜观察样品形貌; 用美国 BIO —RAD 公司 FTS —40 型红外光谱仪对样 品红外吸收特性进行研究。

2 结果与讨论

图 2 为样品的 XRD 图谱。从图中可以看到,所 制得的 TiO₂ 纳米晶均为锐钛型结构,另外还观察到 宇航材料工艺 2003 年 第4期 样品由于晶粒细化而引起的峰形展宽现象。随着 Fe (NO₃)₃ 9H₂O 的引入,在样品的 XRD 图谱中 2 = 33. 12 °, 35. 58 °, 53. 98 °处出现了三角晶系结构的 Fe₂O₃ 的特征峰,说明 Fe³⁺已掺入,且经过 450 ×2 h 热处理后,有机网络断开并吸附和挥发,以稳定的 Fe₂O₃ 存在;同时还看到 Fe₂O₃ 的特征峰亦明显宽 化,通过与 TiO₂ 的特征峰相比,可以断定 Fe₂O₃ 亦呈 纳米颗粒存在。由此可见通过上述工艺已制得纳米 TiO₂/Fe₂O₃ 复合材料。样品晶粒尺寸用 Sherrer 公式 $D = K / \cos$ 进行计算(以 TiO₂ 特征峰计算)^[7],式 中:D 为平均晶粒尺寸,为衍射角, = 0. 154 06 nm, K = 0.9, = $\sqrt{b^2 - b_0^2}$, b_0 为仪器引起的峰宽 化(以半峰宽表示), b 为样品晶粒细化引起的峰宽 化,计算结果见表 2。

图 2 样品的 XRD 图谱 Fig. 2 XRD patterns of samples

表 2 样品平均晶粒尺寸						
Tab. 2 Average crys	stallite size of samples	nm				
样品	平均晶粒尺寸	0				
1 #	11.6					
2 #	10.6					
3 #	8.6					
4.#	5.8					
5#	4 5					

从表 1、表 2 可以看出,随着 Fe (NO₃)₃ 9H₂O 引 入量的增加,样品凝胶时间明显变长,同时晶粒尺寸 变小。用酸度计跟踪实验反应过程,发现加入 Fe (NO₃)₃ 9H₂O 后,pH 值变小,变化程度随 Fe (NO₃)₃ · 9H₂O 量增加而加剧,这是由于 Fe (NO₃)₃ 9H₂O 的水 醇混合溶液呈酸性,溶液中电离的 H⁺与水分子结 合形成水合氢离子 H₃O⁺,在 TiO₂ 表面吸附 H₃O⁺, 库仑引力的作用,进一步吸附 NO³⁻离子,最终形成 具有双电层结构的胶体颗粒,这种双电层结构阻碍 了胶体颗粒之间的团聚,增加了胶体的稳定性,而且 使胶体颗粒的粒径减小,结果延长了胶体体系的凝 胶时间,减小了晶粒尺寸,这与目前胶体化学的理论 是一致的^[8]。

形成带正电的胶体颗粒。在胶体颗粒的外层,由于

图 3 为 1[#]、4[#]样品的 TEM 照片,可以看到 1[#] 样品的平均粒度在 11 nm 左右,分布均匀,分散度 好,这与 XRD 结果是一致的;4[#]样品的晶粒粒度(约 为 6 nm)较 1[#]的小,但存在一定程度的交联。由此 可见,引入 Fe(NO₃)₃ 9H₂O 虽然可起到晶粒细化的 作用,却导致了颗粒间的交联。这可以认为是由于 纳米 Fe₂O₃ 颗粒的较强团聚特性所致。

(a) 1[#]样品

(b) 4[#]样品

图 3 1[#]、4[#]样品的 TEM 照片 Fig. 3 TEM photographs of 1[#],4[#]

宇航材料工艺 2003 年 第4期

图 4 为 $1^{#}$ 、 $3^{#}$ 、 $5^{#}$ 样品的红外吸收图谱,从图 中可以看到,样品对红外光的强吸收峰出现在 400 cm⁻¹~1000 cm⁻¹内,峰形较常规尺度材料的吸收 峰有明显宽化。样品的红外吸收特性采用该峰极大 值一半处的全宽度即半高宽度 (FWHM)表示, $1^{#}$ 、 $3^{#}$ 和 $5^{#}$ 样品 FWHM 的计算值分别为:300.7 cm⁻¹、 428.2 cm⁻¹、475.4 cm⁻¹。由此表明,随 Fe₂O₃ 含量 的增加,样品在 400 cm⁻¹~1000 cm⁻¹内的吸收峰明 显宽化,这是由于 TiO₂ 和 Fe₂O₃ 的特征吸收峰在该 波数范围内相互重叠扩展所致。纳米材料由于粒径

极小,表面原子所占的比例很大,这些原子结合成分 子时,结合键的键长和键角均有不同程度的畸变,分 子振动时,其频率相对中心频率有一定的差异,结果 使纳米材料的红外吸收峰宽化。此外由于纳米颗粒 的表面悬挂键数目较多,活性高,与红外光作用时, 形成等离子激发元,对红外光进行吸收,结果同样导 致纳米材料对红外光的吸收增强。本实验得到的纳 米 TiO₂/Fe₂O₃ 复合材料的红外电磁波吸收能力的增 强除两种材料的吸收峰重叠而扩展之外,还包括上 述机理所致。

图 4 1[#]、3[#]、5[#]样品的红外吸收图谱 Fig. 4 Infrared absorbency spectra of 1[#],3[#],5[#]

3 结论

(1)溶胶 —凝胶法是制备纳米复合材料的有效 方法。通过在 Ti (OC₄H₉)₄的水解过程中引入 Fe (NO₃)₃·9H₂O,体系由溶胶向凝胶转变过程中形成 富含水和有机溶剂的孔隙,为 Fe³⁺的进入创造了条 件。对样品进行热处理时,有机网络断开并脱附和 挥发,剩下了均匀分散的 TiO₂ 和 Fe₂O₃ 纳米颗粒复 合材料。

(2) Fe (NO₃)₃.9H₂O 的引入导致溶液 pH 值减 小,H₃O⁺浓度增加,有利于提高 Ti (OC₄H₉)₄ 的水解 速度,同时 H₃O⁺在溶胶粒子表面的吸附,抑制了颗 粒间的凝聚,提高了溶胶的稳定性,从而延长了溶胶 向凝胶转化的时间,减少了晶粒尺寸。

(3) 所制得的纳米 TiO₂/ Fe₂O₃ 复合材料在 400 cm⁻¹~1 000 cm⁻¹内随 Fe₂O₃ 含量的增加,红外吸收 峰宽化,这对制备宽频带电磁波吸收复合材料提供

了依据。

参考文献

1 张立德.纳米材料.北京:化学工业出版社,2000:39

2 曹茂盛,关长斌,徐甲强等.纳米材料导论.哈尔滨: 哈尔滨工业大学出版社,2001:5

3 王世敏,许祖勋,傅晶.纳米材料制备技术.北京:化 学工业出版社,2001:75

4 丁子上,翁文剑.溶胶 —凝胶制备技术的进展.硅酸 盐学报,1993;21(5):443~450

5 Petrullat J ,Ray S ,Schubert U et al. Preparation and processing of metal-ceramic materials. J. Non-cryst. Solid ,1992 ;147 : 594

6 中本一雄著,黄德如,汪仁庆译.无机和配位化合物 的红外和拉曼光谱.北京:化学工业出版社,1986:106

7 曾昭权,李翔,邹苹等.现代分析仪器导引.昆明:云 南大学出版社,2000:89

8 江龙.胶体化学概论.北京:科学出版社,2002:57

(编辑 李洪泉)

宇航材料工艺 2003 年 第4期

7